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Abstract 

Computational cognitive models provide a principled 
approach to understanding behavior and cognition by 
formalizing latent parameters underlying decision-
making and learning. Many existing models take a 
univariate approach, analyzing single measures in 
isolation, while others incorporate multiple measures 
but impose specific process assumptions that 
constrain how these measures relate. For example, 
drift diffusion models (DDMs) jointly model choices 
and response times under the assumption that 
decisions arise from an evidence accumulation 
process. While effective in many contexts, this 
assumption constrains the flexibility of DDMs, 
potentially limiting their applicability to cognitive 
processes that do not conform to an accumulation-to-
bound mechanism.  

Here, we introduce a hierarchical multivariate 
modeling framework that uses copulas to flexibly 
combine independent likelihood functions, enabling 
joint modeling of multiple measures without imposing 
restrictive assumptions. Through simulations and 
empirical applications, we assess the reliability, 
discriminability, and advantages of copula-based 
modeling (CBM). Model validation via simulation-
based calibration, model recovery, and sensitivity 
analyses demonstrate that CBM is computationally 
robust and accurately recovers latent parameters. 
When applied to psychophysical and probabilistic 
learning tasks, CBM can be empirically distinguished 
from DDMs, even with limited data. Additionally, 
incorporating response times improves predictive 
accuracy for binary choices while reducing uncertainty 
in parameter estimates.  

This framework offers several advantages. It 
accommodates diverse data types, including 
behavioral responses, physiological signals, and 
neural activity, without requiring them to share the 
same distributional properties. It explicitly models 
dependencies between measures, capturing 
interactions typically overlooked in univariate 
approaches. It is theoretically agnostic, allowing for 
greater flexibility in modeling cognitive processes.  
Further, it enables more efficient use of available data 
by integrating multiple sources of information, while 
enhancing model accuracy and efficiency of 
parameter estimation. These findings establish CBM 
as a flexible and generalizable framework, broadening 
the scope of multivariate cognitive modeling and 
expanding the methodological toolkit available for 
cognitive science. 
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Introduction 

From simple reflexes to abstract reasoning, cognition 
spans a wide spectrum of interacting processes, many 
of which remain only partially understood. The 
challenge of unraveling these processes lies not only 
in their quantification but also in developing models 
that accommodate the richness of cognitive 
phenomena while maintaining interpretability and 
theoretical rigor. Traditional approaches to 
computational modeling often rely on univariate 
analyses that isolate individual measures, such as 
choices or response times, and treat them as 
independent indicators of underlying cognitive 
mechanisms. While effective in some contexts, this 
approach risks discarding meaningful dependencies 
between variables and overlooks the interactions that 
shape behavior and cognition. 

Computational cognitive models offer a principled 
framework for inference about cognitive processes by 
formalizing latent parameters that govern decision-
making and learning. These models provide a 
principled approach to linking observed behavior to 
hypothesized cognitive mechanisms. A particularly 
influential class of such models, Drift Diffusion 
Modeling (DDM), posits that decision-making arises 
from an evidence accumulation process, in which 
noisy information accrues over time until a decision 
threshold is reached (Ratcliff, 1978; Ratcliff & Rouder, 
1998). The DDM’s ability to jointly model binary 
choices and response times has made it a 
cornerstone of cognitive modeling. However, its 
reliance on an accumulation-to-bound mechanism 
imposes a specific process assumption that may not 
be suitable for all cognitive tasks. For instance, 
continuous measurements of physiological signals 
such as pupil responses and brain responses. 

To expand the methodological toolkit for cognitive 
science, we introduce Copula-Based Modelling (CBM), 
a hierarchical multivariate modeling framework that 
uses copulas to flexibly model dependencies between 
multiple measures. Unlike conventional approaches 
that impose fixed generative processes, copulas allow 
the integration of distinct likelihood functions while 
preserving the unique distributional properties of each 
variable (Kolev et al., 2006). By decoupling marginal 
distributions from dependency structures, CBM 
enables joint modeling of multiple measures without 
restrictive assumptions about their relationships. This 
flexibility makes CBM applicable to a broad range of 
cognitive science questions, allowing researchers to 
jointly model choices, response times, confidence 
ratings, physiological signals, and neural activity 
within a unified statistical framework. 



Methods 

We evaluated the copula-based modeling (CBM) 
framework through simulations and applications to 
experimental data, assessing its capacity to jointly 
model binary choices and response times across two 
decision-making paradigms. These paradigms 
consisted of a psychophysical task, where 
participants reported the presence or absence of a 
stimulus, and a probabilistic learning task, where 
participants learned cue-outcome associations. 
These paradigms were selected due to their 
prominence in cognitive science and their 
compatibility with the drift diffusion model (DDM) 
(Palmer et al., 2005; Pedersen et al., 2017). Using 
hierarchical Bayesian inference, we validated model 
specification and inference algorithms through 
simulation-based calibration and examined whether 
incorporating response times improved model fit. The 
framework was then applied to publicly available 
datasets to assess its performance on real behavioral 
data, with model comparisons conducted using 
predictive accuracy measures. These analyses 
allowed us to determine whether CBM improves 
behavioral modeling by capturing dependencies 
between choices and response times more effectively 
than DDM. 
 
Copula-Based Modeling.  
The CBM framework is built on three fundamental 
components. First, the relationships between 
experimental variables and outcome measures are 
represented through coupled equations with latent 
parameters.  Second, we assign appropriate likelihood 
functions to each outcome measure. Third, the 
dependency structure among outcome measures, 
beyond their marginal likelihoods, is modelled using 
copulas. 

Step 1: Modeling choice and response times in 
decision-making tasks. 

Choice modeling in psychophysical tasks. 

In the psychophysical task, participants report the 
presence or absence of a sensation in response to 
stimulus presentation. The independent variable, Xt, 
represents stimulus strength, and the probability of 
detecting a percept is modeled using a psychometric 
function (Klein, 2001): 

𝐸𝑡 = 𝜆 + (1 − 2 ⋅ 𝜆 ) ⋅
1

1 + 𝑒𝑥𝑝 (−𝛽 ⋅ (𝑋𝑡 − 𝛼𝑝 
))

 

where Et represents the latent expectation at trial t, 
reflecting the probability of reporting the presence of a 
percept, 𝛼𝑝 the threshold, 𝛽 the slope, and 𝜆 the lapse 
rate.  

Choice modeling in learning tasks. 
In the probabilistic learning task, participants learn 
associations between cues and outcomes. The 
independent variable, 𝑅𝑡, represents cue-stimulus 
associations, with 𝑅𝑡 = 1 denoting a positive 
association and 𝑅𝑡 = 0 a negative one. Learning 
follows the Rescorla-Wagner model (Rescorla & 
Wagner, 1972): 

𝐸𝑡+1 = 𝐸𝑡 + 𝛼𝑙 ∗ (𝑅𝑡 − 𝐸𝑡) 

where 𝐸𝑡  represents the latent expectation at trial t, 
corresponding to the probability of expecting a reward, 
and  𝛼𝑙  the learning rate. 
 
Response times modelling. 
Beyond binary choices, response times provide 
additional information into cognitive processing. Early 
work in chronometric functions (Hick, 1952, Hyman, 
1953) demonstrated a linear relationship between 
response time and decision uncertainty, quantified as 
entropy. For binary decisions, response entropy is 
defined as: 

𝐻(𝐸𝑡) = 𝐸𝑡 ⋅ 𝑙𝑜𝑔(𝐸𝑡) + (1 − 𝐸𝑡) ⋅ 𝑙𝑜𝑔(1 − 𝐸𝑡) 

where 𝐻(𝐸𝑡) is the degree of uncertainty in an 
expectation at each trial. Response times are then 
modeled as an affine function of this entropy: 

𝑅𝑇�̂� = 𝑅𝑇𝑖𝑛𝑡 
+ 𝑅𝑇𝑠𝑙𝑜𝑝𝑒 

⋅ 𝐻(𝐸𝑡) 

where 𝑅𝑇�̂�  denotes the expected response time at trial 
t, 𝑅𝑇𝑖𝑛𝑡 reflects the response speed under conditions 
of minimal or no uncertainty, while 𝑅𝑇𝑠𝑙𝑜𝑝𝑒 quantifies 
the efficiency with which subjects resolve uncertainty 
during decision-making, measured in seconds per bit. 
We further decomposed these response times into 
decision and non-decision components by including a 
non-decision time parameter in our likelihood 
function. This approach allows response times to be 
integrated into CBM as an additional dependent 
measure. 

Step 2: Selection of likelihood functions for choice 
and response times data 

To connect our model predictions with observed data, 
we use statistical likelihood functions that are 
appropriate for each behavioral measure.  

Binary choices (B) are modelled using a Bernoulli 
likelihood, which is the maximum entropy distribution 
for binary outcomes with a known expectation. 

Response times (RT) are modeled using a shifted 
lognormal likelihood, which ensures non-negative 
values and includes an additional non-decision 
parameter which aligns with empirical response time 
distributions. 



 Step 3: Modelling interdependence with copulas 

Until now, we have assumed that binary choices (𝐵𝑡) 
and response times (𝑅𝑇𝑡) are conditionally 
independent given the experimentally manipulated 
variables 𝑋𝑡  ∨  𝑅𝑡, such that: 

𝑝(𝐵𝑡 , 𝑅𝑇𝑡  |𝑋𝑡) = 𝑝(𝐵𝑡  |𝑋𝑡) · 𝑃(𝑅𝑇𝑡  |𝑋𝑡) 

However, this assumption may not always hold, as 
response times and choices often exhibit 
dependencies beyond their shared influence from 𝑋𝑡. 
To explicitly model this interdependence, we introduce  
copulas, which allow us to capture the joint structure 
of these variables while maintaining the flexibility of 
separate marginal distributions. 

To this aim, we first apply the probability integral 
transform, which maps the observed outcome 
measures into standard uniform distributions: 

(𝑈𝑡1
 , 𝑈𝑡2

) = (𝐹1(𝐵𝑡), 𝐹2(𝑅𝑇𝑡) 

where 𝐹1 and 𝐹2 are the cumulative distribution 
functions of 𝐵𝑡  and 𝑅𝑇𝑡, respectively. Then, we apply 
the Gaussian copula to map dependencies between 
the transformed variables. This is achieved by applying 
the normal quantile function (inverse CDF of the 
standard normal distribution) to transform the uniform 
variables into a multivariate normal (MVN) 
distribution: 

[
𝛷−1(𝑈𝑡1

)

𝛷−1(𝑈𝑡2
)
] ∼ 𝑀𝑉𝑁 ([

0
0

] , [
1 𝜌
𝜌 1

]) 

where Φ−1(. ) is the normal quantile function, and 𝜌 
represents the correlation between binary choices and 
response times, beyond what is explained by 𝑋𝑡. 

This approach allows us to separate modeling of 
individual response distributions (marginals) from the 
dependency structure (copula). This flexibility is 
crucial when dealing with mixed data types, such as 
discrete (binary choices) and continuous (response 
times) variables. By introducing a copula, we preserve 
the interpretability of individual behavioral measures 
while capturing the latent dependencies that 
conventional models might overlook. 

We used a Gaussian copula, whose correlation 
parameter 𝜌 captures linear dependence in the 
transformed marginal space. This parameter 
quantifies residual associations between response 
times and choices beyond their marginal models, with 
positive values indicating that longer RTs are 
associated with higher likelihood of choosing “1.” 
Additionally, the copula’s negative entropy provides a 
principled lower bound on mutual information, serving 
as a diagnostic for dependencies not captured by 
simpler models or the specified marginals. 
 
Drift Diffusion Modelling  
For comparison with CBM, we also define drift 
diffusion models (DDMs) for each experimental 
paradigm. DDMs were parameterized to allow drift rate 
to vary, and their specification was defined as follows: 

𝜈𝑡 = (𝐸𝑡 − (1 − 𝐸𝑡)) ∗ 𝜈  

where 𝜈𝑡  represents the drift rate at time t, 𝐸𝑡  latent 
expectation at trial t and 𝜈  is a subject level scaling 
parameter. The joint likelihood function, incorporating 
both binary choice and response time, was modelled 
using the four parameter first passage time 
distribution: 

Figure 1. Simulated realizations of the psychometric model (left) and learning model (right) within the proposed multivariate 
hierarchical copula-based framework. Light blue lines represent 100 prior predictive distributions, while orange lines illustrate 
100 posterior predictive draws. Group mean data points are displayed with 95% confidence intervals. 



 

 

𝑅𝑇𝑡 ∼ {
Wiener(𝜅 , 𝛿 , 𝜂 , 𝜈𝑡), 𝐵 = 1

Wiener(𝜅 , 𝛿 , 1 − 𝜂 , −𝜈𝑡), 𝐵 = 0
 

 
where 𝜅 is the decision boundary, 𝛿  represents non-

decision time, 𝜂 is the starting point bias, and 𝜈𝑡  
denotes the drift rate at time t. 

Simulations 

To evaluate the performance of CBM, we simulated 
data for both the psychophysical and learning 
paradigms. For the psychophysical paradigm, stimulus 
values were uniformly distributed between -40 and 40. 
For the probabilistic learning paradigm, cue-outcome 
associations followed reward probabilities of either 
20% or 80%, with a reversal every 20 trials (Fig. 1). 
Each dataset included 10 subjects completing 60 
trials. Subject-level parameters were drawn from 
group-level distributions, which were selected to align 
with realistic behavioral data and served as priors for 
model fitting. Only the non-decision time and copula 
correlation parameters were not drawn from 
hierarchical group-level distributions (see limitations). 
Figure 1 presents an example of the simulated 
dataset, illustrating samples from both the prior and 
posterior distributions of the CBM. A comprehensive 
list of prior distributions is provided in Supplementary 
Note and on the associated GitHub repository.  

Sampling and fitting 

We implemented our framework using hierarchical 
Bayesian inference leveraging Stan’s for Hamiltonian 
Markov chain Monte Carlo No U-turn sampler, chosen 
for its flexibility in model specification, diagnostic 
capabilities, and incorporation of prior information. 
Simulations were performed in R (R Core Team 2024), 
and model fitting in Stan (Carpenter et al., 2017). Each 
model was sampled using 1000 warm-up iterations, 
followed by 2000 sampling iterations, with a target 
acceptance ratio of .95 and a maximum tree depth of 
12. To ensure convergence and quality of sampled 
parameters, models with divergent transitions or that 
reached the maximum tree depth were excluded.  

Simulation-based calibration 

To ensure the reliability and robustness of our CBMs, 
we conducted simulation-based calibration (SBC) 
(Modrák et al., 2023, Talts et al., 2020), a method that 
extends standard parameter recovery (Wilson & 
Collins, 2019), by simulating data from the prior 
distribution and verifying that the estimated 
parameters align with the simulated values while 
ensuring that credibility intervals are properly 
calibrated. SBC provides a principled test of both the 
model specification and the sampling algorithm, 
mitigating risks associated with parameter 
misestimation. To implement SBC, we generated 2000 
simulated datasets from the CBM for each paradigm, 
fitted each dataset to its corresponding model, and 
recorded the rank of each simulated parameter within 

Figure 2. Simulation-based calibration (SBC) (top) and parameter recovery (bottom) for group mean parameters in the 
psychometric (right) and learning (left) paradigms. SBC results display uniform histograms, indicating a well-calibrated model. 
The black horizontal line representing the average count and the shaded region denotes the expected 95% spread. Parameter 
recovery analysis compares simulated and estimated parameter values, with 90% credibility intervals shown as error bars. 

 
 



the posterior draws. We examined group mean 
parameters, with uniform ranks across simulations 
serving as confirmation that posterior credibility 
intervals were well-calibrated (Talts et al., 2020),  
meaning that an X% posterior credible interval 
contained the true simulated value in X% of cases 
(Fig. 2)  
To reduce the effects of autocorrelation, which could 
distort rank histograms, we thinned Markov chains by a 
factor of 20 (Talts et al., 2020). In addition, we 
conducted parameter recovery by generating scatter 
plots comparing simulated and estimated parameter 
values, including 90% credible intervals, with 
alignment along the identity line (y = x) serving as an 
indicator of accurate parameter estimation. 

Simulation-based analysis 

Beyond SBC, we conducted an additional simulation-
based analysis to systematically evaluate the 
comparative performance of CBM and DDM. Further, 
we also examined whether incorporating response 
times in CBM improves model fit and parameter 
estimation relative to models relying solely on binary 
choice data. To this end, we generated 1000 additional 
datasets for each paradigm, with the generative model 
set as either CBM or DDM.  

We tested the discriminability of CBM against the 
DDM on the full trial-wise log likelihood using 
approximate leave-one-out cross-validation (LOO-CV) 
(Vehtari et al., 2017). Further to understand the 
influence of improvements in model fit on the binary 
choices, we compared the predictive accuracy of 
models with and without response times also using 

LOO-CV. Lastly, we examined the impact of response 
times on the posterior dispersion of key parameters, 
including the threshold, slope, and lapse rate for the 
psychometric function and the learning rate and initial 
expectation for the psychometric paradigm.  

Applications to experimental data 

To evaluate the performance of our CBM-derived 
models against the DDM using real experimental data, 
we analyzed two publicly available datasets from 
psychophysical and probabilistic learning paradigms. 

The psychophysical dataset was sourced from the 
“confidence database” (Rahnev et al., 2020), 
specifically from Bang et al. (2019). This dataset 
included 12 participants performing an orientation 
detection task, where they were required to indicate 
whether a Gabor patch was present in the first or 
second stimulus interval. The stimulus intensity was 
systematically manipulated by replacing a proportion 
of the Gabor patch pixels with noise pixels, a method 
commonly used in perceptual learning studies. For the 
present analysis, we focused exclusively on the first 
day of Experiment 1. 

The probabilistic learning dataset was obtained 
from Hess et al. (2024), in which 59 subjects 
completed a speed-incentivized associative reward 
learning task. In this experiment, participants learned 
to associate fractals with momentary rewards, 
reflecting a structured probabilistic learning 
environment. 

For both datasets, we adjusted the prior 
distributions for the CBM and DDM-derived models to 
ensure that they were appropriately aligned with the 

Figure 3. Model recovery of the copula-based models (CBM) and the drift diffusion models (DDM) for psychometric (top left) 
and learning (top right) paradigm. Each point is a simulated dataset fitted with both models and compared on ELPD (Expected 
Log Predictive Density) difference indicating the discrepancy between the two models with its error (2 standard errors). Lower 
row depicts discrepancy between the CBM and the more traditional approach of only investigating binary choices. 



task structure and expected parameter ranges. A 
comprehensive list of priors is provided in  

Supplementary Note. Additionally, for diagnostic 
reasons, we excluded the fastest response time for 
each participant, as these trials introduced potential 
issues in model comparison procedures. 

Results 

Computation time and dataset exclusion 

Table 1 presents the median and interquartile range of 
computation times in seconds for each model. Due to 
divergent transitions or the maximum tree depth 
reached during sampling, 26% of datasets were 
excluded for the psychophysics paradigm and 2.3% for 
the learning paradigm. 

Table 1. Computation time (median ± interquartile range) 

Paradigm Choice (s) DDM (s) CBM (s) 

Psychophysics 6 ± 1.9 150 ± 19 351 ± 189 

Learning 3.2 ± 1 110 ± 22 323 ± 154 

 

Simulation-based calibration 

Figure 2 presents the results of simulation-based 
calibration (SBC) and parameter recovery for the 
psychometric and learning paradigms. SBC results are 
shown as histograms, indicating where the simulated 

parameter values fall within the posterior draws. SBC 
is considered successful when these ranks are 
uniformly distributed, meaning that histogram heights 
remain within the expected 95% deviation range 
(shaded region). In addition to visual inspections of the 
histograms, we calculated the χ²-statistic for the 
difference between observed and expected 
frequencies for each group mean parameter. This 
allowed us to test whether there was a significant 
violation of uniformity for each parameter. All p-values 
associated with the χ²-statistic were above .05. Below 
the SBC results, parameter recovery plots assess 
whether estimated parameters align with simulated 
values. Accurate recovery is indicated by data points 
aligning with the identity line (y = x), confirming that the 
model can recover true parameter values. These 
results establish the validity of the model 
implementation. 

Model recovery analysis 
Model recovery analysis assessed the ability to 
distinguish between CBM and DDM (Fig. 3 upper). In 
the psychophysical paradigm, the generative model 
was correctly identified in nearly all cases. For DDM-
generated data, the model was correctly selected 95% 
of the time. For CBM-generated data, model recovery 
was nearly perfect at 99.8%. 

Model recovery was just as definitive in the learning 
paradigm. For DDM-generated data, the model was 
correctly identified in 99% of cases. For CBM-
generated data, the model selection rate was 100%. 
 

Figure 4. Posterior standard deviation (SD) of group-level (top row) and subject-level (bottom row) parameters as a function of 
response time inclusion. Parameters from the psychometric paradigm (first two columns) and the learning paradigm (last two 
columns) are displayed. Each point in the top row represents a single dataset simulation, while each point in the bottom row 
corresponds to one of ten simulations per dataset. Points in the beige region indicate reduced SD when response times were 
included, whereas points in the light blue region indicate lower SD when response times were excluded. 



 
Table 2. Percentage of correct model identifications1 

Paradigm DDM CBM 

Psychophysics 95 [92;96] % 99.8 [99;100] % 

Learning 99 [98;99] % 100 [99;100] % 

Modelling choices and response times 
The lower part of figure 3 compares model fits for CBM 
with and without response times. Models that 
incorporated response times were generally favored 
(Table 3). 

Table 3. Percentage for models on binary choices 

Paradigm Choice only CBM 

Psychophysics 0 [0;0.01] % 37 [33;41] % 

Learning 0 [0;0.01] % 13 [11;16] % 

 
To assess how response times influenced posterior 
parameter estimates, Figure 4 presents pairwise 
scatter plots for group-level and subject-level 
estimates. Across most simulations, posterior 
dispersion was reduced when response times were 

 
1 Uncertainty was computed by updating a beta distribution 

starting from Beta (1,1). 

included, as indicated by lower standard deviations. 
This suggests that incorporating response times 
improves the precision of parameter estimates.  

Experimental data 
Posterior predictive checks for both paradigms and 
models are presented in Figure 5. Model comparison 
analysis indicated that CBM-derived models were 
significantly favored over the DDM, with an expected 
log pointwise predictive difference (elpd difference ± 
se difference) of -153 ± 17 for the psychophysical 
paradigm and -554 ± 48 for the learning paradigm. 

 When considering predictive performance based 
solely on binary choices, the comparisons did not 
reveal significant preferences, yielding values of -1.5 ± 
1.7 for the psychophysical paradigm and -11 ± 6 for the 
learning paradigm. The psychophysical paradigm 
exhibited a preference for CBM, while the learning 
paradigm showed a preference for the model without 
response times. 

Additional details, including trace plots, prior-
posterior updates, subject level posterior predictive 
fits model comparison diagnostics and correlation 
matrix between the two models, are provided in 
Supplementary Figures 1-10 and Supplementary Table 
1. 

Figure 5. Posterior predictive checks for experimental data from a psychometric paradigm (left) and a learning paradigm (right). 
Group-averaged data are shown as black dots with 95% confidence interval. The top row depicts the probability of a response, 
while the bottom row presents response times. Marginal posterior means and medians are shown for both the drift diffusion 
model (DDM) (red) and the multivariate hierarchical copula-based framework (CBM) (blue). Orange and light blue lines 
represent 500 marginal posterior draws for DDM and CBM, respectively, illustrating uncertainty around the conditional mean 
and medians (thick lines). 

 
 
 



Discussion 

The findings from this study demonstrate that the 
copula-based modeling (CBM) framework provides a 
flexible and robust approach to multivariate cognitive 
modeling by accommodating dependencies between 
measures without imposing restrictive assumptions. 
Through simulations and applications to empirical 
data, CBM showed strong reliability, parameter 
recovery, and discriminability, establishing it as a 
valuable alternative to traditional models such as the 
drift diffusion model (DDM). 

A key advantage of CBM is its ability to integrate 
heterogeneous data sources while maintaining 
theoretical flexibility. In contrast to DDM, which relies 
on an evidence accumulation framework to jointly 
model choices and response times, CBM allows for 
the independent specification of marginal 
distributions while capturing interdependencies via 
copulas. This distinction enables CBM to model 
decision-making processes that do not necessarily 
adhere to an accumulation-to-bound mechanism. The 
simulation-based calibration and model recovery 
analyses confirmed that CBM accurately estimates 
latent parameters and can be distinguished from 
DDM. 

Beyond model discriminability, the inclusion of 
response times in CBM improved predictive accuracy 
for binary choices while reducing uncertainty in 
parameter estimates. This was evidenced by the 
reduced posterior dispersion of key parameters when 
response times were incorporated. This suggests that 
response times contribute meaningful information 
about underlying cognitive processes and should be 
included in modeling frameworks where feasible. 
These findings align with prior work demonstrating that 
response times serve as valuable indicators of 
uncertainty and decision-making strategies, 
complementing choice data (Hess et al., 2024). 

Moreover, CBM extends beyond the joint modelling 
of choices and response times. Its flexibility allows for 
the integration of diverse behavioral (e.g., confidence 
ratings) and biological measures (e.g., physiological 
responses, neural activity). As CBM captures 
dependencies among multiple data types, it can be 
applied to a wide range of cognitive tasks, broadening 
its utility and offering a more comprehensive 
representation of underlying cognitive processes. 

Despite these advantages, CBM is computationally 
demanding, with substantially longer fitting times 
compared to DDM. This limitation is particularly 
relevant for large-scale studies or real-time 
applications. Additionally, while the copula framework 
offers flexibility, its performance is contingent on 
appropriate selection of marginal distributions and 
dependency structures. Further research should 
investigate best practices for parameterizing these 
elements across different cognitive tasks. 

Limitations 

Four potential limitations should be acknowledged. 
First, due to computational constraints, we simulated 
only 10 subjects completing 60 trials per paradigm. 
While this dataset size was sufficient to distinguish 
CBM from DDM, the comparison of binary choice 
models with and without response times revealed 
trends favoring response time inclusion, though 
statistical significance was not always achieved. 
Future studies should investigate whether larger 
datasets improve model discriminability.  

Second, our CBM-derived models did not include a 
group-level parameter on the copula correlation, 
preventing pooling toward the group mean for these 
estimates. This decision was made due to the 
structure of the Lewandowski-Kurowicka-Joe 
distribution, which governs the copula correlation. 
Since this distribution only contains a single shape 
parameter that affects the concentration around zero, 
hierarchical modeling would not enable meaningful 
shrinkage toward the group mean. Future research 
could explore alternative parameterizations that 
facilitate hierarchical modeling of dependency 
structures. 

Third, we only consider the Gaussian copula, which 
assumes a symmetric and elliptical dependency 
structure. Future investigations should explore 
alternative dependency structures to increase 
modeling flexibility. 

Finally, while the choice models within our CBM 
framework are grounded in cognitive theory, our 
current implementation of the RT component is more 
simplistic and may not explicitly reflect detailed 
cognitive processes. This simplicity is due to our 
specific modeling choices rather than an inherent 
limitation of the CBM itself. The framework is flexible 
enough to incorporate more detailed cognitive 
interpretations depending on how it is implemented, 
which is an important direction for future work. 
Additionally, our comparisons primarily focus on the 
DDM; broader benchmarking against other 
multivariate approaches remains necessary. Although 
our CBM implementation outperforms the DDM in 
predictive accuracy across two experiments, further 
validation across diverse tasks is required to fully 
assess its generalizability. 

Conclusion 

In summary, CBM represents a significant 
methodological advancement in computational 
cognitive modeling. By allowing flexible integration of 
diverse data sources and capturing dependencies 
between measures. The empirical validation 
presented here establishes CBM as a viable and 
generalizable alternative to existing models, with 
potential applications spanning fundamental research 
and applied settings. 
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Supplementary materials 

Supplementary note: 

All code and analysis and models can be found on https://anonymous.4open.science/r/Hierarchical-
Multivariate-Copula-Framework-D746.  
 
Note: for the experimental data we slightly widened the standard deviations of our priors presented below 
and narrowed the non-decision time mean. Specifically, all group means and between subject variances’ 
standard deviation was widened to 1 and the mean non-decision time was set to 0.2. All these priors can 
also be seen in the supplementary figures that display prior posterior updates i.e. supplementary figure 1-4. 
 
Here we represent the full mathematical descriptions and priors for the computational models fit in the 
manuscript. Note 𝒩 refers to the normal distribution, ℒ𝒩 to the lognormal distribution, 𝒩+ refers to a 
truncated normal distribution at 0, LKJ is the Lewandowski-Kurowicka-Joe distribution, Bern represents the 
Bernoulli distribution, and lastly 𝒞𝛷 referes to the guassian copula function. 

Psychophysical copula based model: 

[
𝐹1(𝐵𝑡)

𝐹2(𝑅𝑇𝑡)
] ∼ 𝒞𝛷 ([

1 𝜌𝑠

𝜌𝑠 1
]) 

𝐵𝑡 ∼ Bern(𝐸𝑡) 

𝑅𝑇𝑡 ∼ ℒ𝒩(𝜇𝑡 , 𝜎𝑠) + 𝛿𝑠 

𝜇𝑡 = 𝑅𝑇𝑖𝑛𝑡𝑠
+ 𝑅𝑇𝑠𝑙𝑜𝑝𝑒𝑠

⋅ 𝐻(𝐸𝑡) 

𝐻(𝐸𝑡) = 𝐸𝑡 ⋅ 𝑙𝑜𝑔(𝐸𝑡) + (1 − 𝐸𝑡) ⋅ 𝑙𝑜𝑔(1 − 𝐸𝑡) 

𝐸𝑡 = 𝜆𝑠 + (1 − 2 ⋅ 𝜆𝑠) ⋅
1

1 + exp(−𝛽𝑠 ⋅ (𝑋𝑡 − 𝛼𝑠))
 

𝜆𝑠 ∼ 𝑆(𝒩(𝜇𝜆, 𝜏𝜆)) 

𝛼𝑠 ∼ 𝒩(𝜇𝛼 , 𝜏𝛼) 

𝛽𝑠 ∼ 𝑒𝑥𝑝 (𝒩(𝜇𝛽 , 𝜏𝛽)) 

𝑅𝑇𝑖𝑛𝑡𝑠
∼ 𝒩(𝜇𝑅𝑇𝑖𝑛𝑡

, 𝜏𝑅𝑇𝑖𝑛𝑡
) 

𝑅𝑇𝑠𝑙𝑜𝑝𝑒𝑠
∼ 𝒩 (𝜇𝑅𝑇𝑠𝑙𝑜𝑝𝑒

, 𝜏𝑅𝑇𝑠𝑙𝑜𝑝𝑒
) 

𝜎𝑠 ∼ 𝑒𝑥𝑝(𝒩(𝜇𝜎 , 𝜏𝜎)) 

𝑆(𝑥) =
1

1 + 𝑒𝑥𝑝(−𝑥)
 

𝑟ℎ𝑜𝑠 ∼ 𝐿𝐾𝐽(12)  𝛿𝑠 ∼ 𝒩+(0.3,0.05) 𝜇𝜆 ∼ 𝒩(−3,1)  𝜏𝜆 ∼ 𝒩+(0.6,0.2) 

𝜇𝛼 ∼ 𝒩(0,5)  𝜏𝛼 ∼ 𝒩+(5,2)  𝜇𝛽 ∼ 𝒩(−1.5,0.5) 𝜏𝛽 ∼ 𝒩+(0.6,0.2) 

𝜇𝜎 ∼ 𝒩(−1,0.25) 𝜏𝜎 ∼ 𝒩+(0.5,0.1) 𝜇𝑅𝑇𝑠𝑙𝑜𝑝𝑒
∼ 𝒩(1.5,0.5)                𝜏𝑅𝑇𝑠𝑙𝑜𝑝𝑒

∼ 𝒩+(0.6,0.2) 

𝜇𝑅𝑇𝑖𝑛𝑡
∼ 𝒩(−1,0.25) 𝜏𝑅𝑇𝑖𝑛𝑡

∼ 𝒩+(0.6,0.2)  

https://anonymous.4open.science/r/Hierarchical-Multivariate-Copula-Framework-D746
https://anonymous.4open.science/r/Hierarchical-Multivariate-Copula-Framework-D746


Psychophysical drift diffusion model: 

𝑅𝑇𝑡 ∼ {
Wiener(𝜅𝑠, 𝛿𝑠, 𝜂𝑠, 𝜈𝑡), 𝐵 = 1

Wiener(𝜅𝑠, 𝛿𝑠, 1 − 𝜂𝑠, −𝜈𝑡), 𝐵 = 0
 

𝜈𝑡 = 𝐸𝑡 − (1 − 𝐸𝑡) ∗ 𝜈𝑠  

𝐸𝑡 = 𝜆𝑠 + (1 − 2 ⋅ 𝜆𝑠) ⋅
1

1 + exp(−𝛽𝑠 ⋅ (𝑋𝑡 − 𝛼𝑠))
 

𝜅𝑠 ∼ 𝑒𝑥𝑝(𝒩(𝜇𝜅 , 𝜏𝜅)) 

𝜂𝑠 ∼ 𝑆 (𝒩(𝜇𝜂 , 𝜏𝜂)) 

𝜈𝑠 ∼ 𝒩(𝜇𝜈, 𝜏𝜈) 

𝜆𝑠 ∼ 𝑆(𝒩(𝜇𝜆, 𝜏𝜆)) 

𝛼𝑠 ∼ 𝒩(𝜇𝛼 , 𝜏𝛼) 

𝛽𝑠 ∼ 𝑒𝑥𝑝 (𝒩(𝜇𝛽 , 𝜏𝛽)) 

𝑆(𝑥) =
1

1 + 𝑒𝑥𝑝(−𝑥)
 

𝛿𝑠 ∼ 𝒩+(0.3,0.05) 𝜇𝜆 ∼ 𝒩(−3,1)  𝜏𝜆 ∼ 𝒩+(0.6,0.2) 𝜇𝛼 ∼ 𝒩(0,5) 

𝜏𝛼 ∼ 𝒩+(5,2)  𝜇𝛽 ∼ 𝒩(−1.5,0.5) 𝜏𝛽 ∼ 𝒩+(0.6,0.2) 𝜇𝜅 ∼ 𝒩(0.5,0.25) 

𝜏𝜅 ∼ 𝒩+(0.4,0.1) 𝜇𝜈 ∼ 𝒩(5,0.25) 𝜏𝜈 ∼ 𝒩+(0.5,0.1) 𝜇𝜂 ∼ 𝒩(0,0.1) 

𝜏𝜂 ∼ 𝒩+(0.4,0.1) 

  



Learning copula based model 

[
𝐹1(𝐵𝑡)

𝐹2(𝑅𝑇𝑡)
] ∼ 𝒞𝛷 ([

1 𝜌
𝜌 1

]) 

𝐵𝑡 ∼ Bern(𝐸𝑡) 

𝑅𝑇𝑡 ∼ ℒ𝒩(𝜇𝑡 , 𝜎𝑠) + 𝛿𝑠 

𝜇𝑡 = 𝑅𝑇𝑖𝑛𝑡𝑠
+ 𝑅𝑇𝑠𝑙𝑜𝑝𝑒𝑠

⋅ 𝐻(𝐸𝑡) 

𝐻(𝐸𝑡) = 𝐸𝑡 ⋅ 𝑙𝑜𝑔(𝐸𝑡) + (1 − 𝐸𝑡) ⋅ 𝑙𝑜𝑔(1 − 𝐸𝑡) 

𝐸𝑡+1 = 𝐸𝑡 + 𝛼𝑠 ∗ (𝑋𝑡 − 𝐸𝑡) 

𝛼𝑠 ∼ 𝑆(𝒩(𝜇𝛼 , 𝜏𝛼)) 

𝐸0𝑠
∼ 𝑆 (𝒩(𝜇𝐸0

, 𝜏𝐸0
)) 

𝑅𝑇𝑖𝑛𝑡𝑠
∼ 𝒩(𝜇𝑅𝑇𝑖𝑛𝑡

, 𝜏𝑅𝑇𝑖𝑛𝑡
) 

𝑅𝑇𝑠𝑙𝑜𝑝𝑒𝑠
∼ 𝒩 (𝜇𝑅𝑇𝑠𝑙𝑜𝑝𝑒

, 𝜏𝑅𝑇𝑠𝑙𝑜𝑝𝑒
) 

𝜎𝑠 ∼ 𝑒𝑥𝑝(𝒩(𝜇𝜎 , 𝜏𝜎)) 

𝑆(𝑥) =
1

1 + 𝑒𝑥𝑝(−𝑥)
 

𝑟ℎ𝑜𝑠 ∼ 𝐿𝐾𝐽(12)  𝛿𝑠 ∼ 𝒩+(0.3,0.05) 𝜇𝛼 ∼ 𝒩(−1,1)  𝜏𝛼 ∼ 𝒩+(0.5,0.1) 

𝜇𝐸0
∼ 𝒩(0,0.2) 𝜏𝐸0

∼ 𝒩+(0.5,0.1) 𝜇𝑅𝑇𝑠𝑙𝑜𝑝𝑒
∼ 𝒩(1.5,0.5)                   𝜏𝑅𝑇𝑠𝑙𝑜𝑝𝑒

∼ 𝒩+(0.6,0.2) 

𝜇𝑅𝑇𝑖𝑛𝑡
∼ 𝒩(−1,0.25) 𝜏𝑅𝑇𝑖𝑛𝑡

∼ 𝒩+(0.6,0.2)  𝜇𝜎 ∼ 𝒩(−1,0.25) 𝜏𝜎 ∼ 𝒩+(0.5,0.1) 

  



Learning drift diffusion model 

𝑅𝑇𝑡 ∼ {
Wiener(𝜅𝑠, 𝛿𝑠, 𝜂𝑠, 𝜈𝑡), 𝐵 = 1

Wiener(𝜅𝑠, 𝛿𝑠, 1 − 𝜂𝑠, −𝜈𝑡), 𝐵 = 0
 

𝜈𝑡 = 𝐸𝑡 − (1 − 𝐸𝑡) ∗ 𝜈𝑠  

𝐸𝑡+1 = 𝐸𝑡 + 𝛼𝑠 ∗ (𝑋𝑡 − 𝐸𝑡) 

𝜅𝑠 ∼ 𝑒𝑥𝑝(𝒩(𝜇𝜅 , 𝜏𝜅)) 

𝜂𝑠 ∼ 𝑆 (𝒩(𝜇𝜂 , 𝜏𝜂)) 

𝜈𝑠 ∼ 𝒩(𝜇𝜈, 𝜏𝜈) 

𝛼𝑠 ∼ 𝒩(𝜇𝛼 , 𝜏𝛼) 

𝐸0𝑠
∼ 𝑆 (𝒩(𝜇𝐸0

, 𝜏𝐸0
)) 

𝑆(𝑥) =
1

1 + 𝑒𝑥𝑝(−𝑥)
 

𝛿𝑠 ∼ 𝒩+(0.3,0.05) 𝜇𝛼 ∼ 𝒩(−1,1)  𝜏𝛼 ∼ 𝒩+(0.5,0.1) 𝜇𝐸0
∼ 𝒩(0,0.2) 

𝜏𝐸0
∼ 𝒩+(0.5,0.1) 𝜇𝜅 ∼ 𝒩(0.5,0.25) 𝜏𝜅 ∼ 𝒩+(0.4,0.1) 𝜇𝜈 ∼ 𝒩(2,0.25) 

𝜏𝜈 ∼ 𝒩+(0.5,0.1) 𝜇𝜂 ∼ 𝒩(0.75,0.25) 𝜏𝜂 ∼ 𝒩+(0.4,0.1) 

 
 
  



Supplementary Tables. 

 
Paradigm Model ELPD 

difference 
ELPD standard 
error 

Pareto k>0.7 Pareto k>1 

Psychophysics (full  LL) CBM 0 NA 2 (0.1%) 0 (0%) 
Psychophysics (full LL) DDM -153.4 16.8 5 (0.3%) 0 (0%) 
Learning (full LL) CBM 0 NA 4 (0.04%) 1 (0.01%) 
Learning (full LL) DDM -533.6 47.8 12 (0.13%) 8 (0.09%) 
      
Psychophysics (Binary LL) CBM 0  NA 0 (0%) 0 (0%) 
Psychophysics (Binary LL) Pure choice -1.6 1.6 0 (0%) 0 (0%) 
learning (Binary LL) Pure choice 0 NA 31 (0.3%) 60 (0.6%) 
learning (Binary LL) CBM -11.3 6.0 17 (0.2%) 71 (0.8%) 

 
Supplementary table 1. displays the model comparison on the two experiments investigated. Expected log 
pointwise predictive difference (ELPD difference) of 0 indicates the winning model. The magnitude of difference in 
model fit is found in the losing models’ ELPD difference and its associated standard error. As we used the LOO-
package to compute the ELPD difference, which uses pareto smoothed importance sampling (PSIS), we obtain 
pareto shape parameters (k values) for each observation. These pareto k values help understand the reliability 
and approximate convergence rate of the PSIS-based leave one out cross validation for each observation and thus 
highlight highly influential observations. In general, values above 1 are viewed as very bad whereas values 
between 0.7 and 1 are viewed as bad. Our table shows that for our comparison between the copula-based model 
(CBM) and the drift diffusion model (DDM) had few if any bad diagnostics. The same was seen for the comparison 
on only the binary loglikelihoods (LL) for the psychophysical paradigm. Conversely, on the binary LL for the 
learning paradigm we had quite a few diagnostics above 1, which warrants caution for interpretation.  
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figures. 

 
Supplementary figure 1. Displays traceplots (upper) and prior posterior updates (lower) for each group mean 
parameter for our derived multivariate hierarchical copula based model for the experimental data from the 
psychophysical paradigm. 
 
 

  



 
Supplementary figure 2; Displays traceplots (upper) and prior posterior updates (lower) for each group mean 
parameter for the drift diffusion model for the experimental data from the psychophysical paradigm. 
 
 

  



 
Supplementary figure 3. Displays traceplots (upper) and prior posterior updates (lower) for each group mean 
parameter for our multivariate hierarchical copula based model for the experimental data from the probabilistic 
learning paradigm. 
 
 

  



 
Supplementary figure 4. Displays traceplots (upper) and prior posterior updates (lower) for each group mean 
parameter for the drift diffusion model for the experimental data from the probabilistic learning paradigm. 



 
 
Supplementary figure 5. Displays subject level posterior predictive distributions for the CBM and DDM 
framework to the probabilistic learning paradigm with trial number on the x-axis and the probability of responding 
one, on the y-axis. Black dots represent the individual subjects’ binary choices whereas the green line represents 
the rolling average of 10 of these binary choice. Each facet represents a subject. 

  



 
Supplementary figure 6. Displays subject level posterior predictive distributions for the CBM and DDM 
framework to the probabilistic learning paradigm with trial number on the x-axis response times on the y-axis. 
Black dots represent the individual subjects’ binary choices. Each facet represents a subject. 
 



 
 
Supplementary figure 7. Displays subject level posterior predictive distributions for the CBM and DDM 
framework to the psychophysical paradigm with stimulus intensity on the x-axis and the probability of responding 
one, on the y-axis. Black dots represent the individual subjects’ binary choices whereas the green dots represent 
equally sized bins of the stimulus intensity of binary responses. Each facet represents a subject. 

  



 
 

Supplementary figure 8. Displays subject level posterior predictive distributions for the CBM and DDM 

framework to the psychophysical paradigm with stimulus intensity on the x-axis and response times on the y-axis. 

Black dots represent the individual subjects’ binary choices whereas the green dots represent equally sized bins 

of the stimulus intensity of response times. Each facet represents a subject.  



 
 

Supplementary figure 9. Displays subject level correlation of the parameters of the DDM and CBM model fits to 

the probabilistic learning paradigm. Numbers in each cell represent the median correlation with its 95% highest 

density interval in the square brackets.   



 

 
 
 
Supplementary figure 10. Displays subject level correlation of the parameters of the DDM and CBM model fits to 
the psychophysical paradigm. Numbers in each cell represent the median correlation with its 95% highest density 
interval in the square brackets. 


