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Summary 

Understanding human cognition and behavior is the primary aim of Cognitive Science. To achieve 

this, quantitative methods are frequently used. When these quantitative methods are employed 

assumptions and simplifications must be made, which are embedded in the models used. This 

thesis explores some of these assumptions herein, propagation of uncertainty and validation of the 

models themselves, in a simulated settings. Uncertainty propagation stems from the fact that when 

quantitative data is collected uncertainty is embedded in these measurements. A failure to account 

for these uncertainties can have a substantial impact on the inferences made based on these 

measures. With a focus in how uncertainties in statistical and cognitive models propagate, the 

thesis will further investigate how the validation process of cognitive models can be improved, by 

embracing and quantifying the inevitable uncertainties associated with our cognitive models. The 

framework proposed revolves around simulating agents with known properties which are then 

fitted to the cognitive model to access the model’s ability to detect these simulated properties, 

while accounting for uncertainties embedded in these estimations. The thesis will explore these 

considerations through the three-parameter psychometric function, a widely used cognitive model. 

It will be shown that a correlational approach to determine internal model validity is at best 

quite insensible compared to a more sophisticated approach based on the intra class coefficient. 

The thesis will then demonstrate how uncertainties in parameter estimates and in these two metrics 

can be minimized through more sophisticated methods. This will be done without a need for 

increasing the number of trials or subjects, which is the standard approach. In this regard the thesis 

highlights two important methods for minimizing uncertainty. Firstly, optimizing the design of the 

experiment such that each trial will contain the most information possible. Secondly, incorporating 

already collected data, such as reaction times, into the cognitive model as a means of decreasing 

the uncertainties in the measures of interest. The thesis goes on to explore and re-analyses 

published data using the psychometric function. Here it is demonstrated that incorporating 

structural assumptions of how the data was collected, as well as incorporating reaction times, does 

not only decrease uncertainty in the reliability, but also describes the data well. Lastly the thesis 

highlights and demonstrates novel opportunities for conducting power analyses using. Here it is 

demonstrated, based on the re-analysis of the published data, that by using simulations it is possible 

to build predictive-models that accurately estimate the number of trials, subjects and effect-size 

needed for the psychometric function to find group differences in a particular parameter estimate. 
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This highlights an avenue for researchers building cognitive models to inform others about their 

models’ strengths and weaknesses in estimating parameters of interest. Lastly with this novel way 

of generalizing power analyses it is shown that the number of trials in a cognitive science 

experiment is highly relevant in estimating the psychometric model’s ability to pick up on group 

differences in parameters, which is completely neglected by commonly used power analysis soft 

wares. 
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Introduction 

Most scientific inquiry revolves around measurements of the physical world, whether that it is the 

time it takes for a cup to fall to the ground or for a person to react to a visual stimulus on a computer 

screen. These measurements will be associated with uncertainty, as repeatedly measuring the same 

thing will result in different measurement values. This makes uncertainty a fundamental aspect of 

scientific inquiry and theories. It is therefore also a role of science to quantify such uncertainties. 

In this thesis, I will investigate uncertainty handling in Cognitive Science and provide ways 

to properly account for these uncertainties. The thesis will rely on Monte Carlo simulations, which 

provide a robust method for accounting for uncertainties, in analyses and models. Specifically, the 

thesis will introduce a partially novel approach to testing and validating the parameters of cognitive 

models. This approach is going to be used with a focus on the psychometric function, a commonly 

used cognitive model. It will be shown that the parameters of the model and their uncertainties can 

be reduced by several different interventions. These include optimization of the experimental 

design, and by incorporating additional information already available in most experiments. The 

thesis will demonstrate how modeling and incorporation of such concepts can decrease uncertainty 

in the estimation of parameters of already published data. Lastly, using this re-analysis of 

published data, the thesis will highlight opportunities to conduct power analyses, utilizing a novel 

modeling framework. This framework can help make power analyses for a particular model more 

rigorous by incorporating and propagating uncertainty. Comparison of this novel power analysis 

framework will be compared to popular tools such as G*power. 

Uncertainties in science 

Science can be thought of as a systematic way to organize knowledge in hierarchies, leading to 

testable hypotheses. Knowledge can be hard to define, but most often it is something that is 

achieved though experience. Imagine a cup being dropped, most people will have the knowledge 

that it will fall towards the ground and reach our foot at a particular speed because of our previous 

experiences with dropping a cup. This is to say that knowledge is the relationships that we believe 

to be true with differing amounts of certainty. Even though we might say we are completely certain 

that the cup will fall to the ground, and reach it at a particular speed, this assumption is only true 

most of the time. Given that the natural world is bound on probabilities, complete certainty is 

unwarranted, both in the assumption of the cup hitting our foot, but especially the speed at which 
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it hits our foot with. Here, the interest is not in the unforeseen events, but instead in the 

predictability and (un)certainty of the expected. Science would normally be interested in the 

acceleration of the cup and the uncertainty in this estimate. Scientists have shown that objects 

dropped on Earth will accelerate towards the ground with an acceleration of 9.81
𝑚

𝑠2
 (Johannes & 

Smilde, 2009). However, this number does not mean anything without an estimate of the 

uncertainty, and an understanding of the assumptions entailed with these numbers The first 

proposition is well studied and the 95% confidence interval of the value is estimated to be 

[9.78; 9.84]
𝑚

𝑠2
 (Johannes & Smilde, 2009). The second proposition is also well studied, as we 

believe that the density, the shape, and weight of the cup if dropped outside of a vacuum are 

important. To estimate this acceleration, measurements must be made. These measurements 

include the distance the cup travels and the time it takes. With these measures of distance and time, 

uncertainty is introduced and propagated to get an estimate for the acceleration, but also the 

uncertainty associated with it. This example highlights two main points that this thesis will explore. 

Firstly, uncertainties are organized in hierarchies and are just as important as beliefs. Secondly, 

taking these uncertainties seriously and herein estimating and propagating them should not be a 

choice, or something that can be avoided. After examining these potential issues, the thesis will 

propose methods for incorporating and minimizing uncertainties through simulations. The goal is 

to shed light on the often-overlooked uncertainties in the data collected on human behavior and 

cognition, while also offering strategies for addressing them. It will be argued that accounting for 

uncertainties is more important than ever, especially in research of complex systems such as 

humans. This urgency arises due to the availability of computational resources, having made it 

possible to easily develop more sophisticated analyses and models that have dependencies on 

lower-level analyses. This hierarchical dependency underscores the necessity for proper 

uncertainty handling. Without propagating uncertainties, resulting estimates or beliefs become 

overly confident. Furthermore, these computational resources enable uncertainty propagation 

without a deep understanding of the underlying mathematics, thus making it accessible to most 

researchers, with some coding experience. To effectively convey both the statistical models, as 

well as the underlying uncertainties associated with doing computations on data, the thesis will 

start by exploring different types of uncertainty. 
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Levels of uncertainty and uncertainty propagation 

I will here broadly define three different types of uncertainty, namely measurement, estimation, 

and test-retest uncertainty. These definitions are going to be used throughout the thesis. These 

definitions are not exhaustive and will be centered around how experimental studies in cognitive 

science are conducted, from data collection to data analysis. Before examining these three types 

of uncertainty it is imperative to acknowledge that uncertainties can be defined in hierarchies, and 

that uncertainty propagates through these hierarchies. This uncertainty propagation means that as 

calculations are completed based on measures with uncertainty, the uncertainty propagates to the 

results of the calculations. Simulations will be used to show how uncertainty propagation can be 

understood, and handled, without a need for rigorous mathematical proofs. For a more 

mathematical treatment see (Saccenti et al., 2020). 

The lowest level of uncertainty is in the measurements themselves i.e. measurement 

uncertainty. Measurement uncertainty reflects the uncertainty in how well one can, for instance 

measure the reaction time on a computer or the time it took a falling cup to reach the ground. This 

level of uncertainty is sometimes neglected in Cognitive Science when applying statistical models, 

because they are sometimes thought to be minuscule. An example could be reaction time tasks, 

commonly used in cognitive science (Sternberg, 1969; Stone, 2014). These reaction time 

experiments may or may not have minuscule measurement uncertainty, depending on the 

experimental setup (Crocetta & Andrade, 2015; Holden et al., 2019; Ohyanagi & Sengoku, 2010). 

This is not to say that cognitive scientists do not care about measurement uncertainty, as moving 

towards more sophisticated measurement methods is an ongoing endeavor. For instance, using 

better and more sophisticated computers to measure reaction times (Crocetta & Andrade, 2015). 

Minimizing this kind of uncertainty most often revolves around getting better tools to measure the 

variable(s) of interest. 

The next level of uncertainty arises when calculations are done on data. This is true for 

calculations done on measures with and without measurement uncertainty. This uncertainty will 

be referred to as estimation uncertainty. Estimation uncertainty is often quantified by the statistical 

model, such as in the form of a standard error of a correlation coefficient (CC) or the width of a 

posterior distribution of a parameter. Estimation uncertainty is always present and influenced by 

measurement uncertainty. Minimizing estimation uncertainty is a primary concern for scientists, 

particularly as many cognitive science experiments center around null hypothesis testing. This null 
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hypothesis testing will typically involve testing whether parameter estimates include a particular 

value, typically, 0. Therefore, minimizing estimation uncertainty serves to highlight underlying 

effects. The standard approach to minimize estimation uncertainty is to get more data, provided it 

originates from the same population. In cognitive science this often includes increasing the number 

of trials and/or subjects to get more precise estimates, thereby reducing estimation uncertainty. 

However, this method of minimizing estimation uncertainty is not without its drawbacks or 

inherent uncertainties. Increasing the number of trials in a cognitive task may inadvertently 

exacerbate estimation uncertainty. This can occur due to various factors, including boredom, 

habituation, fatigue, and lack of engagement, particularly when experimental tasks become very 

long (Jeong et al., 2023; Meier et al., 2024). Increasing the number of trials could also make 

participants more prone to switching between cognitive strategies. If these switches are not 

properly accounted for in the analysis, they might be interpreted as additional noise by the model 

and its parameters. Increasing the number of subjects will decrease estimation uncertainty on the 

population level estimates, if the sample population is homogeneous. The tradeoff between 

subjects and trials in an experiment is therefore quite important to minimize estimation uncertainty, 

but also minimize the overuse of resources. In addition to these traditional approaches, there are 

alternative methods for minimizing estimation uncertainty, such as modifying the task design or 

including more information in the model (Baldi Antognini et al., 2023; Stone, 2014). This 

modification or optimization of the task design involves individualizing the task design, to 

maximize the informativeness of each presented stimulus. This task design optimization is 

frequently used in psycho-physical experiments, where adaptive algorithms like PSI, QUEST and 

ADOPY are used to select stimuli that minimizes the uncertainty in the estimated parameters 

(Prins, 2013; Watson, 2017; Yang et al., 2021). 

The final layer of uncertainty to be addressed is the test-retest uncertainty, which arises 

from the variability of parameter estimates over time. In cognitive science the additional 

uncertainty on retesting the estimates of a parameter stems from the fact that humans vary over 

time. This variation is influenced by various behavioral factors like learning, but also 

psychological factors such as mood and arousal (Schurr et al., 2024). 

Measurement uncertainty in a correlational design 

In order to demonstrate and account for these types of uncertainties, the thesis will here show how 

it is possible to add measurement uncertainty to a correlation analysis. This will be accomplished 
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by using simulations. A correlation analysis is chosen as the example for three main reasons. 

Firstly, a significant portion of published literature in Cognitive Science revolves around 

conducting correlational analyses on measures that have quantifiable uncertainties. These 

measures typically involve estimated parameters, structural properties of the brain or even 

reactions times (Berker et al., 2016; Luijcks et al., 2015; J. Wu et al., 2021). Secondly, this example 

can be generalized, such that instead of estimating a CC on data with measurement uncertainty, it 

could equivalently be done for more complex models. Supplementary analysis 1 shows how these 

uncertainties interact in a linear model, in a test-retest paradigm. Lastly, this type of analysis is 

going to be used extensively throughout the thesis serving as a primer for the upcoming sections. 

Initially, a the special case where little to no uncertainty exists in the data is examined. This 

case allows for comprehension of the estimation uncertainty of the CC in isolation, without the 

influence of measurement uncertainty. Analytical solutions exist to calculate this estimation 

uncertainty and is incorporated in most statistical software (Makowski et al., 2023). However, this 

can also be shown by simulations, or more accurately by re-sampling. To estimate the uncertainty 

in the CC, the data is re-sampled with replacement, a technique known as bootstrapping (Efron, 

1983). Iterating this process of resampling gives a distribution of CCs, which with enough 

iterations will converge towards the analytic solution. It is generally recommended to have least 

30 data points, to ensure convergence to the analytical solution (Efron, 1983; Efron & Tibshirani, 

1994; C. F. J. Wu, 1986). For the simplest case of recalculating the CC (without measurement 

uncertainty) and its uncertainty, the process might seem tedious compared to using the direct 

analytic solution. However, once implemented and understood, this approach allows for adding 

and propagating all types of uncertainty, coming from various kinds of distributions. One of the 

advantages of having an analytic solution to the case of estimating the uncertainty of the CC is to 

ensure proper setup of code and scripts. This first step therefore serves as a validation step, before 

venturing into areas where analytic solutions are scarce or nonexistent. 

The initial step is therefore to demonstrate that the two approaches of simulating and 

analytically estimating the uncertainty of the CC is identical across ranges of correlations and 

sample sizes. To achieve this, simulated data from a multivariate normal distribution with the 

following parameters are produced. 

(
𝑥𝑖
𝑦𝑖
) ∼ 𝒩 ((

𝜇𝑥
𝜇𝑦
) , [

𝜎𝑥
2 𝜎𝑥 ⋅ 𝜎𝑦 ⋅ 𝜌𝑥𝑥

𝜎𝑥 ⋅ 𝜎𝑦 ⋅ 𝜌𝑥𝑥 𝜎𝑦
2 ]) 
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Where: 

𝜇𝑥 = 50, 𝜇𝑦 = 100, 𝛴 = [
102 10 ⋅ 10 ⋅ 𝜌𝑥𝑦

10 ⋅ 10 ⋅ 𝜌𝑥𝑦 102
] 

The multinormal distribution produces random variables with a means 𝜇𝑥 a standard deviation 𝜎𝑥 

and crucially, with a CC between the random variables 𝜌𝑥𝑦. This distribution is ideal for 

understanding how the CC changes as it is a parameter of the distribution. Demonstrating the 

equivalence of bootstrapping and the analytic solution to the estimation uncertainty, involves 

simulating CCs from the set 𝜌𝑥𝑦 ∈ {−0.9, −0.8, … ,0.8,0.9} with the total number of samples per 

random variable being 𝑁 ∈ {50,100,… ,500} (Makowski et al., 2022; R Core Team, 2024). See 

supplementary Figure 1 for demonstration of the similarity of these two approaches. 

After having established the equivalence between the two approaches, one can now 

proceed to add measurement uncertainty to each observation. To add measurement uncertainty, 

one can instead of randomly re-sampling pairs of data points from the original data-set, as done in 

the case without measurement uncertainty, one can re-sample these pairs using an error 

distribution. The original data is then inserted as the mean of this error distribution and the 

uncertainty (standard deviation) of this distribution, is the measurement uncertainty. A 

straightforward choice of error distribution would be the normal distribution, which would reflect 

that the uncertainty is assumed to be bidirectional, with no preferred direction. This can be 

formulated as the following: 

(
�̂�𝑖
�̂�𝑖
) ∼ 𝒩((

𝑥𝑖
𝑦𝑖
) , [

𝑚𝑥
2 𝑚𝑥

2 ⋅ 𝑚𝑦
2 ⋅ 𝜌𝑚

𝑚𝑥
2 ⋅ 𝑚𝑦

2 ⋅ 𝜌𝑚 𝑚𝑦
2 ]) 

where �̂�𝑖 and �̂�𝑖 represent the observed estimates of x and y on a particular simulation given their 

measurement uncertainty 𝑚𝑥 and 𝑚𝑦 and the correlation between them 𝜌𝑚. Of note, is that one 

might re-sample the original data from other error distributions. For instance, if values are strictly 

positive, then simulating from a truncated normal or strictly positive distributions like a lognormal, 

would be preferred to avoid sampling values that cannot be obtained i.e. negative reaction time 

values. 

Figure 1 A shows a scatter plot of 𝑥𝑖 and 𝑦𝑖, these might represent different measurements 

from a Cognitive Science experiment, say reaction times and time spent awake. For visualization 

purposes only measurement uncertainty was added to the y-coordinates meaning that from the 

above equation 𝑚𝑥 = 0 and 𝑚𝑦 ∈ {1,2, … ,10}, here this uncertainty is depicted as error bars on 
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individual data points. Figure 1 B displays how the estimated CC distribution obtained by 

bootstrapping changes based on these measurement uncertainties. The figure demonstrates that the 

CC estimated via bootstrapping is attenuated, while its distribution widens with increasing 

measurement uncertainty, mirroring what one would find using analytical solutions (Saccenti et 

al., 2020). 

 

Figure 1 Measurement uncertainty on correlation coefficient. (A) Displays a scatterplot with varying amounts of 

measurement uncertainty. (B) displays how the correlation coefficient distribution, obtained through bootstrapping 

changes with increasing measurement uncertainty. Vertical line is the simulated correlation coefficient without 

uncertainty. 
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Here it was shown with normally distributed noise that decreased the size and width of the 

CC, later nontrivial types of noise are added where the simulation approach used here is necessary 

to properly propagate the uncertainty. This example does not demonstrate how test re-test 

uncertainty interacts with these lower levels i.e. measurement and estimation uncertainty. One can 

imagine measuring the CC from figure 1 B twice, and getting different results, even if the 

measurements were infinity precise, and there was no uncertainty in the estimation process due to 

infinity many data-points. For a more concrete and elaborate example, see supplementary analysis 

1. The main message here is that to get reliable estimates and, in the end, to make reliable inference 

one needs to account for all sorts of uncertainties and the lower in the hierarchy you move the 

more fundamental and important they become. Having a parameter estimate that is stable over 

time will not matter if you cannot estimate or measure it reliably in the first place. 
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Modeling definitions and validation. 

Modeling definitions 

The rest of the thesis will revolve around refining, testing, and designing models of cognition, 

Cognitive modelling will be deployed for this purpose. Cognitive modeling serves as an 

intermediate level in a hierarchy of computational models on top, and statistical models in the 

bottom. These types of models can be thought to differ in their flexibility, assumptions, and scope 

of investigation. It should be noted that these models have many commonalities, such as being 

mathematical representations of a data generating process. This makes these definitions 

operational and should be thought of as having fuzzy boundaries (Durstewitz et al., 2016). 

Statistical models are the models primarily used in medical and social sciences. These 

models mostly consist of linear and generalized linear (mixed) models (Bahadori et al., 2023; 

Maravelakis, 2019). These models are linear combinations of independent variables which are 

sometimes transformed (making them generalized). The mathematical representation of such 

models follows: 

𝐹(𝑦) = 𝛽 · 𝑋 + 𝜖 

Where y is a vector of dependent variables of N elements, F is a link function that maps the 

conditional mean unto a particular space, common link function are the logit and log 

transformations which maps unto domains of [0 ; 1] and [0 ; ∞] respectively. These domains could 

be probabilities and strictly positive values like reaction times. 𝛽 is a vector of regression 

coefficients with P predictors which gets estimated, X Is a matrix of independent variables of size 

[N, P]. Lastly 𝜖 is a vector of N elements containing the errors of the model. The benefit of these 

statistical or regression models is that maximum likelihood estimators are available, making 

parameters estimation fast and efficient. However, one limitation is that they put quite big 

constraints on the types of models that can be fit, i.e. there must be a linear mapping between all 

independent variable and the dependent variable, in a domain that can be mapped with a link 

function. This constraint will in many instances make theories hard or impossible to test as human 

behavior and cognition can be nonlinear (Ivanova et al., 2022). It should be noted that the CC 

examined in the previous section, can be thought of as a special case of this linear model, where 𝛽 

is a single value (the CC) and y and x are z-transformed vectors, see supplementary figure 2. 
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Cognitive models are models that are meant to resemble the generative processes of human 

behavior more closely. These models are generally more theoretically driven as the constraint of 

linear combinations is avoided, by employing different optimization schemes. In many cases 

cognitive models are estimated in a Bayesian framework due to the flexibility with which models 

can be specified. The main advantage of these models, in this context, is the added freedom in 

model specification. 

Computational models are the upper most level of the hierarchy, which here will be used 

to refer to the generalization of cognitive models to other scientific domains, such as physics, 

biology chemistry etc. These models are outside the scope of this thesis. 

These three categories are arbitrary, and many methods and models will fall between them. 

However, these arbitrary definitions do add value in communicating, the general framework being 

worked in and thereby what methods are used. The next section will describe a particular cognitive 

model, which will be the focal point for the rest of the thesis. 
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The Psychometric function 

Here the psychometric function (PF) will be explored, as this type of function has been a stable 

corner stone in the cognitive science literature across many different sub fields (Bahrami et al., 

2012; Coates & Chung, 2014; Courtin et al., 2023; Gold & Ding, 2013; Ma et al., 2024). The PF 

is a continuous function that maps real inputs (here called intensity values) onto probabilities, 

i.e. the domain [−∞;∞] with the range of [0; 1]. In most cases the PF is identical to a logistic 

regression in statistical modeling and is commonly used in perceptual research where probabilities 

are then converted into binary forced choices through a Bernoulli or binomial distribution. The PF 

is usually a cumulative density function such as the cumulative logistic or normal distribution, 

amounting to a logistic or probit regression in the statistical framework. The main difference 

between the statistical and cognitive frameworks usage of the PF is the number of parameters. 

The least number of parameters used to describe the PF is two, the threshold (𝛼) and the 

slope (𝛽). These two parameters describe the center of the curve, with 𝛼 being the intensity of the 

stimulus at probability 0.5, with 𝛽 being the steepness of the function around the threshold. In the 

cognitive modeling framework one or two more parameters are introduced, the lapse (𝜆) and guess 

rates (𝛾). These two parameters together handle the tails (i.e. the far ends) of the psychometric 

function and essentially making the probability in these tails non-deterministic i.e. the upper and 

lower bounds become (𝜆) and (𝛾) instead of 0 and 1 (figure 2). These additional parameters help 

fit the PF to data where attentional slips or wrong button presses happen. It can even be shown that 

including these parameters will greatly improve the estimation of the slope of the PF, if lapses and 

or guesses are present in the data (Wichmann & Hill, 2001). Figure 2 depicts how all these 

parameters change the shape of the PF. For the sake of this thesis, the cumulative normal 

distribution is used to map stimulus values to probabilities with a single lapse rate. This lapse rate 

will govern the distance between the upper and lower bound, essentially making it equally likely 

to have an erroneous response for high and low stimulus values. The mathematical formulation of 

the function is as follows: 

𝑝(𝑥|𝛼, 𝛽, 𝜆) = 𝜆 + (1 − 2 ∗ 𝜆) ∗ (0.5 + 0.5 ∗ 𝑒𝑟𝑓 (
𝑥 − 𝛼

𝛽 ∗ √2
)) 
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Figure 2 Psychometric parameters. Displays how the parameters of the psychometric function i.e., the threshold 

(alpha), the slope (beta) and the Lapse rate (lambda) of the psychometric function change its shape. Columns display 

how the beta parameters changes the slope of the function. Rows show how alpha changes the location of the center 

of the function changes. Lastly, colors in the plot depict how lambda changes the asymptotes in extreme stimulus (x) 

values. 

Model validation. 

In the same vein of validating the bootstrapping approach with the analytical solution, in the 

previous section about measurement uncertainty, cognitive models themselves are many times 

validated. This is to ensure that at least in principle the parameters of the model can be estimated 

with increasing accuracy with increasing number of trials. This section will highlight some of the 

emerging ways in which computational models in the cognitive science literature are being tested 

and validated and takes inspiration in the seminal paper from Wilson and Collins (Wilson & 

Collins, 2019) describing 10 simple rules of computational modeling, which is commonly cited 

when validation of computational models are described (Hess et al., 2024). There are at least three 
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main challenges when building and validation cognitive models, which are particularly relevant 

when writing novel models. How do we know that our models do what we think they do 

(identifiability)? How do we know that they accurately estimate the parameters of interest (Internal 

validity)? And lastly, how do we know that we can distinguish between competing models 

(external validity)? The last challenge is beyond the scope of the current thesis and is well covered 

elsewhere (Wilson & Collins, 2019). The answer to the first two challenges must be found in 

simulations, especially when our models become more and more complex and analytical solutions 

are sparse or even non-existent. 

The simulation practice revolves around selecting an appropriate range of parameter values 

and using these to simulate data from our models. These simulated data are then used to refit the 

model to examine how well the model approximates the simulated parameter values. Ensuring that 

in these approximations are close simulations is desirable for the model to perform well, such that 

one can have faith in them when the real underlying process is unknown, i.e. analyzing real 

experimental data. An appropriate range of parameter values for a particular model can be difficult 

to select, as this is exactly the problem of identifiability. Several lines of information can help 

gauge this. Firstly, looking at mathematical constraints of the model formulations can reduce the 

possible ranges of parameter values. For the case of the PF this amounts to ensuring that the slope 

is strictly positive, as this ensures that increasing levels of stimuli will produce greater probabilities 

of responding 1. This also ensures that the standard deviation of the underlying probability density 

function is strictly positive. The lapse rate of the PF should be constrained between 0 and 0.5, 

again to ensure a particular the shape of the PF. Lapse rates below 0 and above 1 will produce 

probability values outside the [0; 1] range and values above 0.5 will flip the shape of the PF, as 

negative slope values would Not constraining the PF in this way could lead to two distinct 

solutions, as negative slope values and lapse rates above 0.5 would be able to produce the same 

mathematical transformation, making the solution non unique. From a more theoretical level an 

appropriate range of parameter values can be narrowed down by investigating whether the 

observed behavior (given the simulated parameter values) is physically or biologically plausible. 

For the PF we might expect a few of our participants to not be particularly interested in the task, 

this would amount to having a high lapse rate i.e. above 0.2 (amounting to 20% lapse responses) 

or shallow slopes. This behavior, however, is quite unlikely and expecting only few lapses in the 

experiment, given that it is conducted in a quiet environment is likely. Lastly using empirical 
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knowledge from the literature can help narrow the parameter space further. For the sake of 

argument, one might investigate the detection threshold for cold stimulation on the skin. Just given 

this information alone it is possible to narrow down the threshold for cold detection to being below 

the skin temperature of around 30-34 degrees∘ and above the absolute zero of -273 degrees 

(Courtin et al., 2023). However, knowledge from the scientific literature would suggest that 

thresholds between 28 and 33∘ would capture most of the population (Lithfous et al., 2020). These 

same arguments would also apply for the slope. This practice of investigating the assumptions of 

the simulated parameter values is closely related to prior predictive checks in Bayesian workflows 

(Kruschke, 2021). 

The next challenge is about internal validity, i.e. can our model estimate the parameter 

values used to simulate the data on which the model estimates the parameter values. To test and 

validate our models in this regard, we simulate data from pre-specified parameter values, which 

have been deemed to be appropriate, using the first step described above. We then fit our models 

on this simulated data and investigate how well the model can estimate the latent simulated 

parameters (i.e. those that produced the data). This exercise of simulating behavior and then re-

estimating the parameter values from the simulated behavior, is commonly known as parameter 

recovery. Generally, if this procedure succeeds, then the parameters are said to be recovered. The 

satisfactory criterion and metric used to access this procedure, often refers to some CC between 

the estimated and simulated parameter values (Wilson & Collins, 2019). Parameter recovery can 

thus be thought of as an internal validation of a model, which if done properly should increase the 

faith in the parameter estimates, when the model is fit to experimental data. The argumentation is 

thus, had the parameter estimates been known beforehand (i.e. simulated them), then we know that 

they are close to the estimated parameter values obtained. The assumption of this argument is that 

if our model recovers the parameter values well in a simulated setting, then it must also do so when 

fitted to experimental data, where the underlying parameters are unknown. This assumption rests 

on auxiliary assumptions. These auxiliary assumptions include, that the model that generated the 

data is the same or close to, as the one used to model the data. The process of parameter recovery 

thus assumes that we know the underlying generative model, which is not the case when fitting 

experimental data. 

This point, of ensuring that we are selecting the right generative model is the challenge of 

external validity. The challenge is that infinitely many generative models exist, that are compatible 
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with the observed behavior. This challenge cannot easily be solved, as ensuring that we are using 

the right generative model would entail testing all generative models. That would mean being able 

to compare them, while ensuring that all these models are distinguishable In the Cognitive Science 

literature the common practice is to use theoretical framework(s) to build competing models with 

different assumptions of the underlying generative process and then compare this subset of models 

(Berker et al., 2016; Hess et al., 2024). This comparison of models is usually done on how well 

the models can describe the data, using statistical metrics such as information criteria or leave one 

out cross validation, with some penalization for complexity (Vehtari et al., 2017). This highlights 

two important aspects; first, our models reflect our theories and are therefore at best as good as our 

theories, and second, we are likely missing the true generative model in. This point of missing the 

true generative process can be partly mitigated by ensuring that the tested models are 

distinguishable, at least in principle. This challenge has been addressed by simulating data from 

all tested models and then refitting all models to the data simulated by each individual model. 

Returning to the example of the PF, we might have two competing theories of how stimulus values 

are translated into binary choices, one involving the lapse rate and one without. To conduct model 

recovery, data would be simulated from these two distinct models, each model would then be fit 

to all simulated datasets, and the best-fitting model would be determined for each case. The result 

of such model recovery is an N-by-N matrix, with N being the number of models. The rows in this 

matrix would indicate which model was used for the data simulation, and columns indicate which 

model was used to fit the data. The entries of the matrix would then be the frequency by which a 

particular model wins in model comparison, given the data simulating model. An identity matrix 

would represent that the models are completely distinguishable. Any deviation from an identity 

matrix would entail that for some of the simulations, the best fitting model was not the model that 

simulated the data (Wilson & Collins, 2019). 

Limitations of current internal model validation steps 

The model validation steps described above serve to increase faith in our models, their parameters, 

and the comparison between them. However, I will here argue that some of the metrics used to 

access these validations have notable flaws, with a particular focus on the problem of internal 

validity. First, the metrics used can be misleading, to show good model validation, by masking the 

actual poor validation. This problem can thus lead to false confidence in the model and 

overconfidence in the inference made based on it. Additionally, the metrics often lack sensitivity 



Name: Jesper Fischer Ehmsen   AU-ID: 645332               Study number: 201910213 

 20 

or specificity to provide the person building the model with information about how and where, in 

parameter space, the model performs well, thereby leaving valuable insights hidden. In the 

following section, the thesis will highlight some of the metrics commonly used in the literature for 

model validity, which are described in Wilson & Collins (2019). As mentioned above internal 

validity is often accessed by simulating data from a model given a set of parameters. This simulated 

data is then fitted to the model, which then optimizes for the parameters. Subsequently, the CC 

between the estimated and simulated parameters is often computed as an estimate of internal 

validity (Hess et al., 2024; Schurr et al., 2024; White et al., 2018). In their seminal paper Wilson 

& Collins (2019) describes that ideally, the estimated and simulated parameters should be tightly 

correlated, without any bias. They also highlight that a weak correlation could mean bugs in the 

code, or an underpowered study i.e. too few trials. They also emphasize the importance of plotting 

a scatter plot of simulated vs estimated parameter values, to access if ranges of parameter values 

are problematic, but also to access whether there might be biases. 

I will here argue that the CC is an inappropriate metric and that a version of an intra class 

correlation (ICC) is better suited for the task of interest. Acknowledging two important things; 

neither metric is perfect, and visually inspecting the simulated vs estimated parameter scatter plot 

is crucial. Failing to ensure sensitive and specific metrics for internal validity of the models, may 

result in significant resources being invested in a model that ultimately fails to perform adequately, 

hindering scientific progress. It could take years before researchers realize that a model is flawed, 

even in simulated settings, posing a significant roadblock to scientific advancement. 

Current problems with internal model validity (parameter recovery) 

The first and perhaps biggest problem of internal validation of computational models, is that it is 

not universally done. This makes it hard or even impossible to know if the generative model in 

question, can be trusted. The second, almost ubiquitous problem in the literature using parameter 

recovery is the oversight of interactions between parameters. This is less of a concern for 

individuals using an established cognitive model but should be a big concern in the methods papers 

describing and formalizing them. A prime example of this is the Hierarchical Gaussian filter (C. 

Mathys et al., 2011 ; C. D. Mathys et al., 2014). Where after having laid out the equations of the 

model, two of the most crucial parameters (𝜅 and 𝜃) of the model, that sets this model apart from 

the Kalman filter, are held constant when performing parameter recovery. Even in much simpler 

models, as in the PF described above, there are trade offs and interchangeability between 
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parameters. The last problem with parameter recovery is the reliance of CCs to access it. As has 

been suggested elsewhere, that the CC is at best insufficient and at worst misleading (Schurr et al., 

2024). Three primary problems exist with using CC to examine internal validity, namely 

invariance to linear transformations, the domain and the interpretation of the estimate. 

CCs are invariant to linear transformations. The means that two sets of variables i.e. [1,2,3] 

and [1,2,3] have the same correlation after transforming one of the sets with linear transformation. 

Consider the transformation 𝑓(𝑥) = 2 ⋅ 𝑥 + 3, resulting in the sets [1,2,3] and [5,7,9]. The CC 

between these two sets will have the same CC as before the transformation. In terms of model 

validation these two instances would be very different. In the first, one would have perfect internal 

validity, whereas in the second it would be severely lacking. This lack of sensitivity to linear 

transformations does not make sense for parameter recovery, as we want a metric that penalizes 

this behavior. 

The domain of correlations is [-1; 1]. However, this directionality is nonsensical for internal 

validity. A CC of -1 would mean perfect recovery of the parameters of the model, with a negative 

sign, meaning that you do recover the value (or the linear transformed value) just not the sign. 

Ideally, we seek a metric that ranges from no recovery to perfect recovery, rather than perfect 

recovery without the sign to perfect recovery with the sign. 

Lastly, the interpretation of the CC in terms of parameter recovery poses challenges. 

Determining what is a sufficiently large CC for parameters and identifying what types of 

uncertainty is causing the correlation to be less than ideal, is not obvious. Attempts to make such 

distinctions have been made without much traction (White et al., 2018). All these issues resemble 

what researchers have encountered when trying to estimate the stability and/or test -retest 

reliability. Here the widely used solution was to use the ICC as the metric instead of the CC (Schurr 

et al., 2024). 

ICC Parameter recovery 

Because the idea of using the ICC as a metric for parameter recovery is relatively new and has 

only been suggested, and not implemented anywhere in the literature, to the authors knowledge 

(Schurr et al., 2024). I will here outline what the ICC is and how it can combat some of the 

shortcomings of the CC in accessing model validity. 

The ICC, in its simplest form, is a ratio of irreducible variances (uncertainties) to the total 

variance in the data. In practical terms, the irreducible uncertainty is the uncertainty between 
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subjects, whereas the total uncertainty can have several components. To calculate the ICC, these 

variances need to be estimated such that their ratio can be computed. The estimation of the 

variances can be achieved using a model that properly accounts for these different types of 

variances. These models are typically hierarchical models, where known structure of the data is 

embedded. 

Taking the of a researcher trying to determine the test-retest reliability on the detection 

threshold of cold stimulus. The researcher will have his subjects come in for x sessions and do the 

same task each visit. We will now assume that all subjects come from the same underlying 

distribution (i.e., the population), which is governed by a population mean and a population 

variance, i.e. the between subject variance. From this population level an individual subject level 

distribution is drawn, here each subject has their own mean and variance (within subject variances). 

Now for each session that each subject participates in a parameter value is drawn. This parameter 

value is drawn from subject level distribution, which then governs the participants’ behavior on 

that session. This nested hierarchical structure is demonstrated in figure 3, where each of the levels 

are governed by the levels above and each level has an associated variance. The between subject 

variance is the variance of the population level distribution, and the within subject variance is the 

variance of each of the participant level distributions. The ICC as mentioned above is the ratio 

between this within and between subject variances. This can mathematically be expressed as. 

𝐼𝐶𝐶 =
𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2  

Where 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  is the between the subject variance and 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2  is the within subject variance. 

Given the of interest the model’s performance, we can simulate agents that have no within subject 

variance i.e. the same true parameter values for each session. Then its possible to examine how the 

number of trials and or subjects of the cognitive task will influence the model’s ability to capture 

that there is no within subject variation. Note the number of sessions could also be examined. 

This approach has one clear problem, it does not tell explicitly investigate how well the 

model estimates the true parameter values, for each participant at each session. The ICC described 

above only estimates how close each parameter is to itself between sessions. To capture the 

difference between the true simulated value and the estimated parameter value of the model, one 

might use the mean squared errors (MSE) between the simulated and estimated parameter values. 

This MSE would serve as a residual error of the model on the parameters. Including this into the 
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ICC formulation above is straightforward, as this is just another source of variance which can be 

added into the denominator. This also highlights one of the advantages of the ICC, i.e. it is a 

partitioning of variance (uncertainty) in the model. This partitioning of variance is valuable when 

building and validating models, as this gives clues to where the model fails and where it might 

excel. In figure 3 the MSE would amount to taking the difference between the estimated parameter 

value (distribution) of a particular subject at a particular session and the simulated value. Formally 

we add the MSE into the ICC equation. 

𝐼𝐶𝐶 =
𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2 + 𝜎𝜖2
 

Where 𝜎𝜖
2 is the MSE. This conceptualization allows for putting parameter recovery for a model, 

into a single value for each parameter, that ranges from 0 to 1. This metric is also going to be trial 

and subject dependent. Here it should be noted that this formulation of the ICC would imply a 

nested hierarchical structure, as described above, and depicted in Figure 3. This is not necessarily 

the case for the CC. Using the CC, one could simulate numerous subjects and then calculate the 

CC on each of these subjects fit individually. Alternatively, the ICC used for parameter recovery 

could also be calculated in a non-nested hierarchical manner, where only a single session for each 

subject is simulated, i.e., mathematically 𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2 = 0. 
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Figure 3. Visualization of a nested hierarchical model with sessions nested within subjects within a population 

of parameter estimates from a psychometric function. Displaying from the top down how the nested hierarchical 

model assumes structure of the underlying data. Data (points in the bottom plot) is entered at the lowest level where 

the cognitive or statistical model is fitted (here a psychometric function). The parameters of this model are drawn 

from a session distribution which is nested within a subject distribution which again is nested within a population 

distribution. This nesting of the parameters of the model allows for seamless estimation of the partitioning of 

variance within the model. For the sake of parameter recovery within subject variance is simulated to be 0, and the 

mean squared difference between the session level distribution and the simulated parameter value is calculated and 

put into the denominator of the ICC metric. 
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Figure 3 displays the conceptualization of the ICC with the additional MSE. Parameters 

propagate from the population level distribution to the subject level distribution and into the 

session level distributions, which then forms the cognitive model at the trial level. Figure 3 displays 

this as a psychometric function for two sessions. 

The concept of parameter recovery using this framework aims to assess the degree to which 

the whole model can distinguish between the types of uncertainty. In this framework the within 

subject variance can be simulated to be zero, and the MSE can be calculated as the difference 

between the session level parameter estimates and the simulated parameter values. This entails that 

in the simulated setting the ICC-value from the above equation is 1, i.e. the only source of variation 

is between subjects. However, when running simulations, one can investigate how the model itself 

ascribes this variation, as uncertainty will be inferred within subjects or session, but also in the 

parameter estimates themselves. 

Standard parameter recovery. 

Turning the attention back to the three parameter PF. This cognitive model will be used to 

demonstrate this novel way of conducting parameter recovery. After having specified the model, 

one can simulate data from different ranges of parameter values, to select an appropriate range of 

parameter values. Parameter ranges are selected and simulated in accordance with table 1 and 

figure 4. Using the probabilistic programming language Stan and its interface with R, Rstan (Gabry 

et al., 2024), one can invert the model from the data to derive the estimates of the latent parameters, 

which were used to simulate the data in the first place. Note, that for all models displayed and 

estimated their convergence was accessed by ensuring Rhat values were below 1.03, and that no 

divergent transitions were present. Ideally all chains would have been inspected but given the vast 

amount of simulation presented throughout the thesis, visual inspection of each model was 

infeasible and summary diagnostics were used instead. Furthermore, all priors for all models 

presented were weakly informed. This would typically entail that most of the prior distributions 

were set as normal distributions with means of 0 and standard deviations of 3 between 5, in the 

unconstrained space. For a comprehensive list of all priors used, readers are referred to the 

supplementary material or the GitHub repository. 

 

 

https://github.com/JesperFischer/Master-thesis
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Table 1: parameters of the normal distribution used to simulate agents. Columns 
depicts the parameter type for the psychometric function, the mean and standard 

deviation of the normal distribution used for simulating the parameters and lastly the 
transformations for each of the parameters, from left to right. 

Parameter Mean Sd Transformation 

Alpha 0 10.0 x 

Beta 2 0.6 Log(x) 

Lambda -4 2.0 𝐿𝑜𝑔𝑖𝑡−1(x) / 2 

 

 

Figure 4. Displays 100 samples of the parameters of the psychometric function from table 1. Visualization of 

the implications of the simulated parameters of table 1. Black lines depict individual subjects, while the red line 

depicts the group mean. 
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100 pairs of parameters are simulated based on the values in table 1, amounting to 

simulating 100 subjects. The data obtained from these 100 subjects are then refitted using the same 

model. The pairwise scatter plot of estimated vs simulated parameter values are depicted in figure 

5. Here the estimation uncertainty of each parameter is added as vertical lines. This simulation was 

done for 100 subjects over 100 trials, where each of the stimulus values were selected as the set 

𝑥𝑖 ∈ {−50,−49,… ,49,50}. Figure 5 also displays how adding estimation uncertainty to the CC 

changes the resulting size and uncertainty estimate of the CC (i.e. its own estimation uncertainty). 

This influence of uncertainty on the CC resembles what was also shown in section on measurement 

uncertainty. It should be noted that the addition of this uncertainty does not necessarily have to 

decrease the size and or uncertainty of the CC. One could imagine a couple of points falling way 

off the identity line, with high uncertainties. These points would have less weight, when accessed 

with uncertainty, meaning that adding estimation uncertainty could in principle also increase the 

CC and decrease its own estimation uncertainty. This highlights the non-trivial and nonlinear link 

when uncertainties from fitted models are added to further analyses. 
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Figure 5. Parameter recovery for the three parameters of the psychometric function in the unconstrained 

space. Scatter plot of simulated vs recovered parameter values, with error bars displaying the 95 % highest density 

interval for that parameter on that simulation. Text on each facet shows the estimated correlation coefficient with its 

standard error (estimation uncertainty) (with) and (without) accounting for estimation uncertainty in the individual 

parameter estimates (data points), i.e., propagating uncertainty. 

To evaluate the proposed ICC metric alongside the more standard parameter recovery 

approach, the same data-set as above was utilized. Crucially the data set above was simulated using 

only 50 simulations that were duplicated, making it eligible to compare the above standard 

parameter recovery with the ICC proposed. This simulation therefore implies that there is no within 

subject variation, as the first 50 data-sets were duplicated. One difference between the above single 

fit models and the proposed model depicted in figure 3, is the hierarchical structure embedded in 

the model. The hierarchical structure serves to shrink parameter estimates in relation to their 

distance and uncertainty from the mean of the higher-level distribution, which they are drawn 

from. This shrinkage, sometimes called pooling, has been shown to improve predictive capacity 
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and these models are commonly used in the Cognitive Science literature (Bates et al., 2015; 

Boekel, 2021; Gomes, 2022). To ensure a fair comparison the two internal validity metrics, the 

CC and the ICC, were calculated from this hierarchical model. Two ICC values were calculated 

now referred to as 𝐼𝐶𝐶1 and 𝐼𝐶𝐶2, referring to excluding and including the MSE respectively. 

 

Figure 6. Parameter recovery for the three parameters of the psychometric function in the unconstrained 

space, using the nested hierarchical model. Scatter plot of simulated vs recovered parameter values, with error 

bars displaying the 95 % highest density interval for that parameter on that simulation. Text on each facet shows 

four metrics of internal model validity, correlation coefficient (without) and (with) accounting for estimation 

uncertainty, and the purposed ICC metric without and with including the mean squared error, ICC_1 and ICC_2 

respectively. 

Figure 6 illustrates that the hierarchical model fit improves the parameter recovery metrics. 

This is evident from both from a visual inspection of the points falling closer to the identity line, 

with less estimation uncertainty, and quantitatively by comparing the correlation estimates 

between figure 5 and 6. This finding helps to underscore why hierarchical models in general are 

preferred to single fit models, as the partial pooling improves estimation of the parameters (Bates 
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et al., 2015; Boekel, 2021; Gomes, 2022). This finding is further demonstrated in figure 7, where 

estimation uncertainty, here the 95% credibility interval, of each parameter at each session is 

plotted as histograms. It is quite important to note that a single simulation like this would be 

insufficient to ensure that the parameters are recovered. A good example of this is the lambda 

parameter. Investigating the pairwise scatter plot, of the nested hierarchical model, one might 

suggest that this parameter is quite well recovered. However, back transforming a lambda value of 

-5, on the unconstrained scale, would entail to a lapse rate of around 1.3%. This should be difficult, 

if not impossible, for the model to accurately estimate, especially given the 100 trials for each 

subject. Supplementary Note 2 describes this in more depth. 

Turning the attention to the ICC values of figure 5. It is observed that 𝐼𝐶𝐶1 on each of the 

three parameters has an upper bound at the maximum value of one. This can also be visually 

inspected by looking at the variation between pairs of data-points. Here the session one estimates 

are hidden behind the session two estimates, with only a few estimates deviating slightly. The 𝐼𝐶𝐶2 

estimate is crucially the lowest for all three parameters. Visual inspection of the pairwise scatter 

plot makes this clear as well. This metric is penalized for both the degree to which the points fall 

away from the identity line, but also by the estimation uncertainty associated with these points and 

the variation between pairs. This also explains why the alpha parameter is close to being 

asymptotic at 1, but with a little to be desired for simulated values between 0 and 10. 

In the next section it will be shown how these metrics, especially the 𝐼𝐶𝐶2, is influenced 

by different factors. It will be shown that by reducing estimation uncertainty, it is possible to 

increase this metric. Four different different strategies will be introduced to minimize estimation 

uncertainty, these include adaptive optimization design, increasing the number of trials, assuming 

different group mean slope values and lastly, jointly modeling of the binary responses with 

response times. 
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Figure 7 Estimation uncertainty for each parameter for the single and hierarchical fit models Each panel 

represents one of the three parameters of the psychometric function with the estimated uncertainty (95% credibility 

interval) depicted as histograms. The color of the histogram shows whether the model was fit using the single fit or 

hierarchical model. 
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Uncertainty minimization 

Adaptive design optimization 

An import consideration for parameter recovery, is the design of the experiment that the agent goes 

through. Referring back to figure 4, providing stimulus values in the far ends of the psychometric 

functions, i.e. in the ranges of [-50 ; -25] and [25 ; 50] will in most cases, give limited information 

on the shape of the psychometric. This could entail that the threshold and slope could be more 

informed by sampling stimulus values in the [-25 ; 25] range, see supplementary note 2 for 

discussion on the lapse rate. Therefore, selecting the input stimuli, in this interval could be assumed 

to be better for decreasing the estimation uncertainty in the two parameters, compared to randomly 

or uniformly exploring the input space. One might even go a step further; instead of selecting 

inputs that are more appropriate based on the mean of the population, each experiment could be 

individualized to each subject. 

This practice of individualizing the experiment is called adaptive design optimization 

(ADO). The concept revolves around selecting inputs that are optimal given a specific criterion 

(Prins, 2013; Watson, 2017). Many of these criteria exist, including minimizing entropy, 

minimizing the posterior variance, or maximizing mutual information. What they all have in 

common is that they decrease estimation uncertainty, either of all or certain parameters. One of the 

main challenges of utilizing ADO is that the experiment has to be updated and individualized on 

a trial-by-trial basis. In the extreme this would require the algorithm, to run in tandem with the 

experiment. This puts significant constraints on the computation time of the algorithm. This issue 

has been partly solved in the existing packages by calculating a grid, of a particular resolution, of 

parameter values before the initialization of the experiment. This solution puts the heavy 

computation time before the experiment, ensuring that when the experiment is run, only a single 

look up is needed to provide the next stimulus value on each trial. This approach works great for 

experiments where each trial is independent of the next, like in a psychophysical experiment. 

However, if trials were mutually dependent as in a learning experiment, then the algorithm would 

need to calculate all possible lines of stimuli and responses, up until a certain point. This dependent 

structure would therefore become a daunting task, due to the combinatorial complexity. I will 

describe how an ADO can be implemented, utilizing the single-subject model, which was used for 

the single-subject parameter recovery. The goal of demonstrating how easily such an ADO can be 
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implemented is to show and examine the flexibility in the cognitive modeling framework. The 

advantages of being able to write such a custom algorithm is two-fold. First, if the model can be 

written to invert observed data to parameter values (i.e. fit a model to data), then it can also be 

used to simulate stimulus values, this therefore increases flexibility. Secondly, as this approach is 

not “optimal” for stimulus selection, the method can be extended to mutually dependent 

experiments. Building such an ADO can be done using variational inference algorithms. These 

algorithms can quickly estimate an approximate posterior distribution of the parameters of interest, 

here the pathfinder algorithm implemented in Rstan is used (Zhang et al., 2022). This algorithm 

locates normal approximations to the targeted density of the posterior distribution with its quasi-

Newton optimization. Using this approximate normal, the pathfinder algorithm draws samples 

from it to provide approximate posterior samples. The rationale behind this approach to ADO is 

to iteratively fit the model as responses from the participant is collected. The parameter estimates 

from the model are then updated, and a new stimulus value is then selected based on these 

estimates, together with the knowledge of which stimulus values are the most informative for 

parameter values. For a full description of how the pathfinder algorithm was implemented, see 

supplementary note 3. 

Figure 8 shows how the posterior distribution of the three parameters of the PF varies as a 

function of trials. This is visualized by using the previously uniform selection of stimulus values 

and the implemented pathfinder approach. As can be seen, both approaches make the parameters 

converge towards the real simulated values (black line), with increasing trials. However, the speed 

towards convergence is quite different, especially for the two parameters that the pathfinder 

algorithm is optimizing for, alpha and beta. After just 20 trials, using the pathfinder optimization, 

these parameters have found the simulated parameter value and is decreasing their estimation 

uncertainty (95% credibility interval). In contrast, even after 50 trials the uniform approach still 

has a bias in the estimation (the individual points are not on the black line), but also a substantial 

estimation uncertainty associated with it. For completeness, a PSI-algorithm was also used to 

compare the feasibility of this new approach due to the high constraint on computation time 

(Kontsevich & Tyler, 1999). Interestingly, the pathfinder algorithm completed the 50 trials in 14 

seconds, whereas the PSI algorithm took 30 seconds. This highlights the feasibility of this 

approach, as experimental designs must be run relatively quickly, in order to keep the attention of 

the subject (Kwon et al., 2023). 
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Figure 8 comparison of algorithms to obtain stimulus values of the psychometric function. Columns and colors 

display the three parameters of the psychometric function, while rows depict the (adaptive) algorithm used to obtain 

the parameter estimates. The figure displays how the Pathfinder algorithm quickly converges to the simulated value 

(black line) for the three parameters alpha, beta, and the lapse rate. This contrasts with the two other methods that 

take more trials to converge. 
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To show the differences more formally in the ways of selecting stimulus values across a 

range of trial numbers, the algorithms were run 100 times. This was done for trials ranging from 

20 to 100 in a sequence of 10 trials (using the same range of parameter values, as depicted in table 

1). To ensure fair comparison, each algorithm was only used to generate the stimulus sequence. 

This meant that data-sets were refitted using the same single fit Bayesian model used for the single 

fit parameter recovery, ensuring the same priors for all models. The inputs for the following 

analysis were, therefore, the posterior distribution of these refitted parameter values. For complete 

details on the fitting and optimization strategy, see supplementary note 3 and 4, including prior 

initialization for PSI and Pathfinder. Figure 9 shows the results of this simulation, with the top 

panel showing the bias, i.e. the difference between the estimated and simulated parameter values 

and the bottom panel the uncertainty in the estimated parameter value. Interestingly, the PSI-ADO 

performs the worst both in terms of bias in the slope (beta) and lapse rate (Lambda) parameter, 

and especially in the estimation uncertainty for all parameters. The main difference between the 

uniform and Pathfinder approach appears in the estimation uncertainty, especially in the threshold 

(alpha), where estimation uncertainty is significantly lower for all trial numbers. 
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Figure 9. shows how the estimation bias (upper row) and uncertainty (lower row) changes according to the number 

of trials (x-axis) and parameter value estimated with the different methods of selecting the input stimulus (colors). 

Having tested and compared the pathfinder algorithm, one can now examine three other 

focal points of minimizing estimation uncertainty, namely subjects, trials, and the influence on the 

mean simulated slope value. The last point is less obvious than the others but stems from the fact 

that increasing the slope (decreasing the steepness) of the PF will make it harder to estimate the 

parameters of the function. This means that estimation uncertainty is increased if other factors are 

held constant, the reason for this will become clear below. The number of subjects might also 
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influence estimation uncertainty, as the partial pooling effect of the hierarchical model will be 

stronger with more subjects. To investigate these three focal points, trials ranging from 20 to 200 

in increments of 20, subjects between 10, 30 and 50 and lastly mean slope values of 1,2 and 3 in 

the unconstrained space are simulated. All other parameter values being identical to table 1. To 

guard against simulations that are not representative, due to either bad convergences in the ADO 

or in the fitting procedure, each combination was run five times. Figure 10 displays the result of 

this parameter recovery, across trials and group mean slope levels (i.e. simulated beta values). 

Figure 10 only displays the correlation approach with the inclusion of estimation uncertainty, in 

the upper panel, and the developed 𝐼𝐶𝐶2 in the lower panel. For the two other metrics i.e. the 

correlation without proper uncertainty propagation and the 𝐼𝐶𝐶1, see supplementary figure 3. Due 

to the limited influence of subjects, these have been aggregated in Figure 10. Supplementary 

figures 4 and 5 display the individual subject simulations separately. 
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Figure 10 comparison of parameter recovery metrics, across trials and simulated steepness of psychometric 

function. The first row depicts how the correlation coefficient between simulated and estimated means change as a 

function of trials (x-axis) and the simulated mean slope (color) for each parameter of the psychometric function 

(columns). The bottom row shows how the estimate of 𝐼𝐶𝐶2 changes based on the same metrics as the correlation 

coefficient. Note that the correlation coeffecient has been uncertainty propergated using bootstrapping. 

From Figure 10, the main differences between the two approaches are that the ICC metric 

is generally lower than the correlation approach. Both approaches do asymptotically move towards 

one, with increasing trials and/or simulated mean slopes of the psychometric function. One way to 



Name: Jesper Fischer Ehmsen   AU-ID: 645332               Study number: 201910213 

 39 

highlight the difference, and significance of this difference, is to plot the pairwise scatter plot of 

simulated vs recovered parameter estimates. These pairwise scatter plots are what both metrics in 

Figure 10 attempt to describe. Picking the instances where the difference between the correlation 

and ICC approach is the greatest will give insight to which metric might be more suitable. Figure 

11 shows the pairwise scatter plot of the threshold (alpha) in three selected trials (40, 120 and 200) 

for both steep and shallow slopes (means of 1 and 3, respectively for beta). These instances were 

chosen, because the CC and ICC were similar for the steep slopes, but remarkably different with 

shallower slopes. Figure 11 shows why there is such a difference between the two metrics. The 

ICC metric is penalized considerably more by the increased estimation uncertainty and the 

deviation from the identity line. This is especially evident in the threshold when shallower mean 

slopes are used. This observation indicates that the ICC metric is more sensitive to uncertainty, 

compared to the CC. The same reasons apply for the difference in the slope estimate itself, and 

pairwise scatter plots can be found in supplementary figure 6. Lastly, both approaches suggest that 

the lapse rate is below the two other metrics, without much improvement with increasing trials, 

but with the ICC being more conservative. 
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Figure 11. Showing the pairwise scatter plots of simulated vs recovered threshold (alpha) parameters when the 

simulated slope (beta) value is low (beta = 1) and high (beta = 3) for trials (columns). 

As conveyed by the pairwise scatter plots in figure 11, the conservative ICC metric captures 

the fact that estimation uncertainty is a source of variability, which can be reduced, even when the 

CC suggests a close to perfect fit. This aligns with the behavior one would like when trying to 

understand and validate their model. Furthermore, the values of the ICC have a natural 

interpretation, as the ratio of between subject variance to total uncertainty, whereas for the CC the 

interpretation is not straightforward. This means that an ICC value of 0.8 indicates that 80% of the 

variance in the model is governed by the between subject level variance, and therefore only 20% 

is in the estimation or test -retest uncertainty. The ICC could be further decomposed into these 

constituent parts to explain what is deriving these last 20%, see supplementary figure 3. This 

straightforward and nuanced interpretation is not present for the CC, especially because of the 

arguments laid forth in the “Current problems with internal recoverability of models” section. 

Another import considerations, sometimes neglected in parameter recovery, is the hierarchical 
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structure, as mentioned in the previous section (Harrison et al., 2021; Hess et al., 2024; Hübner & 

Pelzer, 2020). Lastly, this approach highlights that parameter values, in a cognitive model, do not 

necessarily have to improve with increasing trials. This is the case for the lapse rate (lambda 

parameter) in this particular PF and could perhaps have been improved if the ADO algorithm was 

built for estimating this parameter. Nevertheless, mindlessly increasing the number of trials to 

hopefully decrease estimation uncertainty on a parameter, should only be done after having 

conducted such an analysis. This would be to ensure that resources are not wasted trying to 

decrease estimation uncertainty on a parameter, to a degree that is not possible, even in principle. 

Increasing information in cognitive models 

The previous section highlighted how the number of trials and the group level slope, but not the 

number of subjects, could influence the parameter recovery metric. In this section, it will be 

described how using data and/or information about the underlying experiment, can reduce 

estimation uncertainty further. Here, the incorporation of reaction times of the agents’ responses 

are going to be used, these will serve as sources of information about the underlying PF. The focus 

on the reaction times is twofold; first they have a long and rigorous history in the cognitive science 

literature, but more importantly, are present in many experiments conducted today (Hess et al., 

2024; Legrand et al., 2022; MacLeod & Dunbar, 1988; Pirolli & Anderson, 1985; Sternberg, 

1969). 

To incorporate the reactions times into the current formulation of the generative structure 

of the task, it is helpful to think of the output of PF as a probability of responding 1. Thus, in either 

end of the tail of the PF, the certainty with which you respond is the highest, and the midpoint 

between the extremes (the threshold) is the most uncertain. This descriptive formulation is what 

the variance of the Bernoulli distribution describes, which is the distribution that converts the 

probabilities from the PF to binary choices. 

𝑉𝑎𝑟(𝐵𝑒𝑟𝑛(𝑝𝑡)) = 𝑝𝑡 ⋅ (1 − 𝑝𝑡) 

Here 𝑉𝑎𝑟(𝐵𝑒𝑟𝑛(𝑝𝑡)) is the variance of the Bernoulli distribution at 𝑝𝑡, which is the probability of 

responding 1 at trial t. Using this information, together with the assumption that participants will 

respond slower when more uncertain and faster when certain, one can model the reaction times as 

a linear combination of this Bernoulli variance. This linear combination is thus formalized as an 
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intercept, to account for the individual differences, and a slope that scales the influences of the 

uncertainty to the variances of the underlying PF. Mathematically this would entail. 

𝑅𝑇𝑡 ∼ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝛽𝑅𝑇 ∗ 𝑉𝑎𝑟(𝐵𝑒𝑟𝑛(𝑝𝑡)) 

where RT is the reaction time at trial t, intercept represents the intercept and 𝛽𝑅𝑇 represents the 

degree to which the uncertainty from the psychometric function influences the reaction times. 

Figure 12 shows a visualization of this mapping. 

To stochastically model the reaction times with this formulation, a probability density 

function is needed to account for the noise in reaction times observed. Due to the non-negative 

nature of reactions times, and physical constraints of information processing (i.e. a delay from the 

time the stimulus is presented to which it reaches the brain of the agent), a sensible choice of this 

probability density function would be the shifted log normal distribution. This introduces two more 

variables, a non decision time (𝜏) and a standard deviation (𝜎) for the log normal distribution (Jain 

et al., 2015; Ranger et al., 2020). This formulation of the reactions times follows the mathematical 

relationship described below, where the crucial link between the psychometric function and the 

reaction times is the Bernoulli variance. 

𝑅𝑇𝑡 ∼ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝛽𝑅𝑇 ∗ 𝑉𝑎𝑟(𝐵𝑒𝑟𝑛(𝑝𝑡), 𝜎) + 𝜏 

To show how incorporation of these reaction times could help with recovery of the parameters, 

agents with the parameter values displayed in table 2 were simulated. 
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Table 2: Parameter distributions for reaction time simulations. Parameter distributions 
for the simulated agents and the transformations for each of the parameters when 

including the reaction times in the psychometric function. 

Parameter Mean Sd Transformation 

Alpha 0 10.0 x 

Beta [1 ; 3] 0.6 Log(x) 

Lambda -4 2.0 𝐿𝑜𝑔𝑖𝑡−1(x) / 2 

Intercept -2 0.5 X 

BetaRT [1 ; 1.5] 0.3 Log(x) 

Sigma -1 0.5 Log(x) 

Non-decision-
time 

-1 0.5 𝐿𝑜𝑔𝑖𝑡−1(x) * minRT 

    

 

Figure 12. Visualization of the psychometric function with Reaction times. The upper panel depicts 10 

psychometric functions where parameters were drawn from table 2 (Beta = 3 and BetaRT = 1.5). Lower Panel 

depicts the assumed relationship between the stimulus value (x) and the reaction times (y), which as can be seen is 

dependent on the shape of the psychometric function in the upper panel. The reaction time functions peak around the 

psychometric threshold and tapers off when the psychometric function asymptotes at 0 or 1. 
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To understand the influence of the size of coupling between the PF and the reaction times 

(𝛽𝑅𝑇), this parameter was simulated with either a high or low group mean, 1.5 and 1 respectively. 

The steepness of the slope of the PF also varied between high and low, 1 and 3 respectively. These 

values were used after having simulated and visualized the implication of them. This can be seen 

in figure 12, where ten simulated subjects are visualized. The figure clearly shows the relationship 

between the PF and the reaction time function. At high stimulus values, i.e. the most extreme x-

values, the reaction times are fast, and the psychometric function is approaching 0 or 1. As the PF 

increases from very low stimulus values (the left side), the reactions times increase up until the 

threshold for that agent is reached, and then the reaction times decreases again. 

Next, utilizing this model, a parameter recovery analysis can be conducted that investigates 

the influence of these reaction times on the recovery of the parameters. Here only the 𝐼𝐶𝐶2 is 

depicted for the 8 combinations of slope, size of the RT coupling, and inclusion of reaction time 

is depicted. Similar results were obtained by using the CC, which can be seen in supplementary 

figure 7. Figure 13 displays the difference in parameter recovery between inclusion of reaction 

times in the modeling, on the 3 parameters of the psychometric function. The plot highlights 

increased 𝐼𝐶𝐶2 values for the two parameters of particular interest, i.e. the threshold (alpha) and 

the slope (beta). This difference is particularly present in the slope parameter for both slope 

conditions (i.e. steep and shallow simulated mean slopes i.e. 1 and 3), but also in the shallow 

simulated slope (beta = 3), on the threshold. In these conditions the 𝐼𝐶𝐶2 metric has not reached 

its asymptote of 1, as is the case in the steep slope simulation on the threshold. This means that 

inclusion of the reaction time can reduce estimation uncertainty in the slope and threshold 

parameter. 
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Figure 13. Parameter recovery of the psychometric function for the Intra class correlation for each parameter 

(columns), in each combination of including and not including reaction times and its size (color), and the simulated 

mean slope (rows) for differing number of trials x-axis. Stronger coupling is associated with greater intra class 

correlation values for both threshold slopes, with a strength dependent association i.e. the higher the coupling 

strength the more improve recovery when comparing to not utilizing reaction times. 
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Experimental data 

Having investigated how the PF, both in terms of the interaction between parameter values, but 

also in terms of estimation uncertainty of the parameters are influenced by various factors. The 

thesis now turns to a re-analysis of already published data. The goal with this re-analysis is 2-fold. 

First, it reiterates the fact that making assumptions about the structure of the data can make big 

differences in the parameter estimates and their uncertainties. Second, it will serve as a starting 

point for understanding the utility of the internal model validity, as a metrics to gauge how trials 

and subjects interact on the statistical power of a model to reject a hypothesis, which will be 

investigated in the last section of the thesis. This final aspect of testing hypotheses will tie together 

how the validity steps above can help determine the ability of a particular model to conduct 

hypothesis testing. 

Heart rate discrimination task 

The Heart rate discrimination task (HRD) as introduced in Legrand et al. (2022), is an interoceptive 

task, entailing that participants were instructed to attend to their internal bodily states. The study 

recruited 223 participants, who completed the task twice, within 6 weeks between visits. HRD task 

has participants internalize their own heart rate for 5 seconds, meanwhile the participant’s heart 

rate is monitored and calculated in real time. Subsequently, participants are exposed to five 

auditory tones with a given frequency (not the internal frequency of the tone, but the frequency of 

how fast the tones is presented), that is either faster or slower than their own objective heart rate. 

The amount this auditory tone’s frequency is faster or slower, is determined by the PSI ADO 

algorithm introduced in the “Adaptive design optimizing” section. This means that the stimulus 

value for the PF for this experiment is the difference between the external tone’s frequency and 

the observed heart rate of the participant. The binary responses are therefore either faster or slower, 

with faster referring to the belief that the individual heart rate was faster than the tone’s frequency. 

For instance, one might have a heart rate of 50 beats per minute (BPM) and then hear tones in a 

frequency of 40 BPM, they would then be asked to respond whether this 40 BPM tone is slower 

or faster than their own heart rate. The authors of the experiment ran a single participant level 

model of each subject, in each session, and then correlated the slope and threshold of the PF. They 

found a medium correlation between the threshold r = 0.5 p < .001 between sessions, while the 

correlation for the slope was negligible r = 0.1, p = .15 (Legrand et al., 2022). This particularly 
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low reliability estimate of the slope of the PF, entails that this parameter is a state and not a trait 

of a particular individual, at least over the 6-week time span investigated. The next section 

investigates how these reliability estimates might change given different assumptions, on the 

structure of the data, but also by employing different models by incorporating additional 

information in terms of reaction times and confidence ratings. 

The models 

This section describes the models fit to the test-retest data-set described above. These models sort 

to examine the influence of different assumptions on the correlation between session one and two 

of the PF parameters. The baseline model is the single fit model and is going to be the same as 

fitted by the authors. This entails estimating each individual for each of the sessions separately 

without a lapse rate (i.e. a two parameter PF). Subsequently, a CC between the estimates from 

session one and two is calculated. Adding and propagating the uncertainty of these estimates will 

serve as the next model. Next, the same model as above with a lapse rate with be tested, in order 

to understand the influence of this parameter in this particular data-set. Two types of hierarchical 

models are going to be fit. The first is a single layer hierarchical model, amounting to modeling 

the two sessions from the same multivariate normal distribution with priors for each session. This 

model directly captures the correlation between sessions, as it is included in the variance - 

covariance matrix of the multivariate normal distribution. This model amounts to the model 

displayed in figure 3, with the participant level distributions removed. The last type of model is 

the nested hierarchical model (figure 3). This model assumes that all subjects have a mean level 

parameter which are drawn from the same population level multivariate normal distribution. Each 

parameter for each session is then drawn from a subject level distribution. For this last model the 

ICC is the statistical metric estimated by the model itself (i.e. what has been described as 𝐼𝐶𝐶1), 

and the correlation will be calculated afterwards. In addition to examining the influence of the 

assumed data structure, in the fitted models, reaction times for each trial is also going to be 

included. This will be done in the same vein as described in the section about increasing 

information in cognitive models. Finally, a full model is going to be fitted, which will incorporate 

continuous confidence rating available in the data-set. This full model will not only incorporate 

the reaction times on a trial-by-trial basis, but also these confidence ratings for each trial. 

Confidence ratings were included in the task of the original experiment to examine the 

participants’ interoceptive metacognitive abilities. Here these confidence ratings are used to 
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inform the parameters of the underlying psychometric function, similarly to the reaction times. 

The confidence ratings are going to be modeled in close resemblance to the reaction times, just 

inverted. This inversion is because at the threshold of the psychometric function the uncertainty 

about the stimulus representation is the highest, and therefore reaction times should be their 

highest, but confidence should be at the lowest. Another difference between the reaction times and 

the confidence ratings is their range of possible values, and therefore the probability density 

function used to describe them. The confidence ratings in the task were bounded between 0 and 

100 ranging from complete uncertainty to certainty. The beta distribution is a natural choice of 

probability density function for such kind of double bounded variable, as it is bounded between 0 

and 1 (Geissinger et al., 2022). The problem with using beta distribution, in this case, is the edge 

cases of 0 and 1’s which for the confidence ratings are 0 and 100, when dividing each confidence 

rating with 100. One approach to circumvent this issue is to model these edge cases separately, by 

using a zero-one-inflated beta distribution. However, this model treats these edge values as 

separate processes, which does not align with the experiment, because confidence ratings are 

meant to represent a continuous. For simplicity, the thesis therefore subtracts a small number 

i.e. 0.001 from the 1 rating and adds 0.001 to the 0 ratings, making it possible to use the beta 

distribution for the full range of confidence ratings. Admittedly, this approach of modeling the 

bounded ratings between 0 and 100 is tenuous, and new methods are slowly being developed see 

Kubinec (2023). Reaction times of the responses were at maximum 8 seconds, and were modeled 

by the shifted log normal distribution introduced previously. To fully understand the parameters 

and implications thereof readers are referred the Github, where a shiny app has been made to 

demonstrate the full model (Chang et al., 2022). 

Results 

Table 3 displays the CC between the first and second session for the threshold and slope for each 

model, when uncertainty was propagated using bootstrapping. For a full table of all parameters, of 

all models, as well as with and without uncertainty propagation, see Supplementary table 1. This 

table is linked to the github of the thesis, due to the size. 

  

https://github.com/JesperFischer/Master-thesis/tree/main/Shiny%20app
https://github.com/JesperFischer/Master-thesis/blob/main/Supplementary%20tables/Supplementary%20table1.xlsx
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Table 3. Results from reanalysis of legrand (2022). Table showing the correlation 
between sessions of the threshold (alpha) and slope (beta) parameter of the 

psychometric function using different model fomulations as well as hierarchical model 
structures. 

alpha beta lapse model structure 

0.51 [0.40 ; 0.63] -0.00 [-0.07 ; 0.06] FALSE Binary Single 

0.50 [0.38 ; 0.61] 0.03 [-0.06 ; 0.11] TRUE Binary Single 

0.52 [0.39 ; 0.63] 0.09 [-0.03 ; 0.36] FALSE RT Single 

0.52 [0.41 ; 0.64] 0.04 [-0.03 ; 0.14] TRUE RT Single 

0.51 [0.38 ; 0.62] 0.14 [-0.05 ; 0.37] FALSE RT+Conf Single 

0.52 [0.39 ; 0.63] 0.12 [-0.02 ; 0.28] TRUE RT+Conf Single 

0.51 [0.41 ; 0.59] 0.23 [-0.01 ; 0.44] TRUE Binary Hierarchical 

0.49 [0.40 ; 0.58] 0.25 [0.08 ; 0.42] TRUE RT Hierarchical 

0.49 [0.40 ; 0.58] 0.23 [0.08 ; 0.38] TRUE RT+Conf Hierarchical 

0.53 [0.49 ; 0.58] 0.20 [-0.03 ; 0.43] TRUE Binary 
Nested 
Hierarchical 

0.54 [0.51 ; 0.58] 0.27 [0.08 ; 0.47] TRUE RT 
Nested 

Hierarchical 

0.55 [0.53 ; 0.58] 0.21 [0.06 ; 0.37] TRUE RT+Conf 
Nested 
Hierarchical 

 

 

Table 3 highlights the differences in the session-by-session correlation of the slope and 

threshold for the PF, when additional assumptions of the hierarchical structure is assumed 

(structure column). Additionally, models also included the reactions times as well as the 

confidence ratings (model column). Generally, table 3 shows an increase in the correlation with 

higher assumed structure, but also with increased complexity of the type of responses modeled. 

Interestingly, the models with confidence ratings included performed worse than the models with 

only the added reaction time, perhaps indicating improper modeling of these. The main difference 

in session-by-session correlation between the two hierarchical models can be found in the 

threshold, as the nested hierarchical model outperforms the non-nested hierarchical model. 
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A concern of this approach of just looking the CCs, is that a model with a high session by 

session correlation, might not fit the data. Therefore, an examination of the model fit is crucial, in 

order to ensure that the nested hierarchical model also fits the data. One approach to access this 

would be to examine model fit using common metrics such as leave one out cross validation, 

information criterion etc. The difficulty with this, is that most of the models are incompatible. This 

incompatibility stems from the models being fit to differing amounts of subjects, in the case of 

hierarchical vs single fit models, and to differing amounts of dependent variables in the case of 

within model architectures. Another consideration for not conducting model comparison, in the 

models that are comparable, is that the difference between these model is in the assumption of the 

data, and is therefore something that should have been decided, before modeling the data. Here, 

all types were used in order to investigate the differences in results. Therefore, given that was 

known that each subject was accessed twice (and not a new participant was tested), and that the 

nested Hierarchical model captures this assumption, one should be inclined to choose this model, 

regardless of the session-by-session correlation. 

Instead of directly comparing the comparable models, one might look at posterior 

predictive checks. These checks investigate whether the model predictions align with the data. 

Posterior predictive checks were performed for the most complicated models, to ensure that the 

models are capturing the underlying patterns, in the collected data. Posterior predictive checks, on 

both group level and single subject level, can be seen in supplementary Figure 8-11 together with 

Supplementary Note 5. 
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Importance of uncertainty minimization 

Throughout the thesis uncertainties, from measurements to estimations to the uncertainty of these 

estimations over time, have been investigated, through statistical and cognitive modeling. The 

section on measurement uncertainty was a brief overview highlighting ways in which 

computational resources can be used to account for these uncertainties. Next, the section about 

estimation uncertainty showed how different approaches can be utilized, from smart design of the 

experiment, to including additional information present, to decrease this kind of uncertainty. In the 

last section reliability of estimates were examined using experimental data and how the approach 

of adding additional information to the analysis can increase the reliability of the test re-test 

reliability. 

To fully appreciate and explore how these uncertainties interact and their implications for 

hypothesis testing, the thesis will below conduct a power analysis, for the experiment analyzed in 

the previous section. In this power analysis, measurement uncertainty is assumed to be negligible. 

This amounts to assuming that participant’s heart rate is estimated with infinite precision, 

consistent with the previous analysis, as the authors of the experiment did not disclose the 

uncertainty in these estimates. 

Furthermore, only the simplest form of the PF with 3 parameters is going to be analyzed, 

focusing only on a difference in thresholds. The power analysis is limited in scope, to fully capture 

the potential of this way of conducting a power analysis. The simplicity of the model is for the 

power analysis to fully explore the effects of combinations of subjects and trials on statistical 

power, with the least amount of computational overhead, but see discussion and limitations for 

further elaboration of this. The following sections introduce power analyses, and how they are and 

can be contextualized. 

Power analysis 

When researchers are interested in the parameter values of their models, they often seek interest 

in how they differ by some manipulation. This could for instance be a pharmacological 

intervention, or a difference between healthy controls and patient populations. In such a scenario 

a key question is, how many participants and/or trials do I need to reliably detect a particular size 

of effect, between the two conditions? These estimates of trials and participants can, in principle, 

be calculated a priori to conducting the experiment, given some assumptions. This type of a priori 
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analyses thus tries to answer the question of, what is the probability that my results are going to be 

“significant”, given some “real” underlying effect. Here “significant” refers to the standard 

frequentist approach of rejecting or failing to reject a null hypothesis, based on a significance level. 

Usually, this concept of hypothesis testing is illustrated in a 2 by 2 matrix, with the real 

latent effect being in one dimension, and the model results in the other dimension (see table 4). 

The probabilities of landing in either of the four categories are usually described as functions of 

our statistical significance threshold (alpha / p-value), and the statistical power of our model and 

test (1-𝛽). This framing of power analyses, is thus to imply that results are significant, if the p-

value is less than a particular value (5%), and that the probability to detect this effect, given that it 

is present, is another arbitrary value, typically set at 80% (Chén et al., 2023; Dumas-Mallet et al., 

2017). 

 

Table 4. 2 by 2 confusion matrix of whether the is an underlying effect (Reality) and 
whether a model can correctly identify this effect or not whether its present or not. 

  Reality (effect) 
Reality (no 
effect) 

Model result 
(significant) 

1-β α 

Model result (in-

significant) 
β 1-α 

 

Power analysis in practice 

Our models in Cognitive Science will reject and fail to reject, different effect sizes at different 

rates, based on their magnitude, as well as the amount of data i.e. the number of subjects and/or 

number of trials. Increasing the number of subjects and/or trials serves to reduce the uncertainty 

in the estimated effects and thereby increasing the probability of detecting said effect. 

With this understanding, the commonly depicted table above (table 4) is somewhat 

misleading, as the dimension of “reality” is a continuous variable of the size of the effect. Our 

models then have a specific probability of rejecting a hypothesis, based on the effect size observed 

at a particular set of subjects, trials and significance level. For example, consider a researcher 

wanting to detect an effect of gender on height, in the human population. Assuming an underlying 
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effect, the researchers observe X females and Y males and conducts a statistical analysis to 

determine whether he can reject the null hypothesis (there are no differences in height, in the two 

genders). Compare the above hypothesis to the hypothesis that there is an effect of age (late 

adolescents vs. adults) on height. The gender difference is generally larger than the age difference, 

and therefore with all else being equal (trials, subjects, statistical model etc.) this difference will 

be easier to detect compared to the difference in height, based on age. Therefore, in conducting 

power analyses observed effect sizes are simulated, (effect sizes in the data that is observed) with 

differing amounts of trials and subjects. The ability of the statistical model to reject these simulated 

experiments is then accessed. Usually, this involves counting the number of times the model 

achieves “significant” results, compared to non-significant results, which then represents the 

power of the model, at that number of trials, subjects and observed effect size. This approach 

accurately captures how we expect the model to behave when we fit the data to the model after 

obtaining it. It tells us if we observe a particular effect size, we will with a specific probability be 

able to reject the null hypothesis. The utility of such analysis therefore lies in being able to examine 

how many subjects and/or trials are needed, to obtain a statistical power of usually 80%, given that 

a particular effect size in the population is present. The assumed effect size in the population might 

be informed by previous studies and/or meta-analyses in the field. Additional assumptions are then 

needed, in order to approximate the distribution of effect sizes, as these statistical metrics also have 

uncertainty associated with them. 

The power simulations conducted in this thesis will focus on a repeated measures design 

investigating a threshold difference, due to some intervention. Subjects, trials, and effect sizes in 

a variety of combinations are therefore simulated (figure 14). The choice of effect size metric was 

the Cohens’ 𝑑𝑟𝑚, as seen in the formula below. This particular effect size is suitable for repeated 

measures design because it accounts for the correlation between the two sessions of each 

participant, i.e. the test-retest reliability of the metric investigated. 

The simulation process followed these steps. First, a set of agents were simulated from a 

multivariate normal distribution with two sessions, the parameters were informed by the group 

level parameters of the binary nested hierarchical model, presented in section about experimental 

data, (see supplementary table 2, for the exact values for each parameter). Next, the thresholds of 

the second session for the agents were increased by a random variable, drawn from the difference 

distribution. This difference distribution was calculated based on the two equations presented 
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below, where the second session variance was defined as 1.5 times the variance of the first session. 

To ensure a particular observed effect size, this process was repeated until an observed effect size 

of the desired value, was obtained within ± 0.01. This step of re-sampling for a particular effect 

size was mainly for visualization purposes (see Figure 14 and the accompanying text). After 

simulating the parameter values of each agent at each session, the agents were put through the 

pathfinder algorithm to obtain their trial-by-trial stimulus values. The complete trial-by-trial data-

set was then fitted using a single layered hierarchical model, where the threshold was 

parameterized as a linear combination of an intercept, and a dummy coding of session with a 

difference parameter (supplementary note 6, for the full model description). 

𝜇𝛿 = 𝑑𝑟𝑚 ∗
√𝑉𝑎𝑟1 + 𝑉𝑎𝑟2 − 2 ∗ 𝜎1 ∗ 𝜎2 ∗ 𝜌

√2 ∗ (1 − 𝜌)
 

 

𝜎𝑑𝑖𝑓 = √𝑉𝑎𝑟1 + 𝑉𝑎𝑟2 − 2 ∗ 𝜎1 ∗ 𝜎2 ∗ 𝜌 

Mean and standard deviation of the difference distribution between the two sessions. Where 𝑉𝑎𝑟1 

is the variance of session 1 and 𝑉𝑎𝑟2 is the variance of session 2. 𝜌 is the correlation coefficient 

between the two sessions and 𝜇𝛿 is the mean of the difference distribution with 𝑑𝑟𝑚 being the 

standardized effect size between the two sessions. 

Power analysis results 

Understanding the goal of conducting a power analysis, it can be difficult to choose the number of 

combinations of trials, subjects and observed effect sizes to explore. The space of these 

combinations is theoretically infinite, and practically also quite large. Therefore, conducting a 

complete power analysis with all combinations of trials, subject and observed effects sizes for a 

single model is unfeasible. However, this thesis will demonstrate that the variation in how well the 

PF rejects the null hypothesis, given subject and trial combinations is stable over observed effect 

sizes. This stability allows for possible ways to give good predictions of power, without needing 

to simulate the exact number of participants or trials. This procedure is therefore about simulating 

a set of trials, subjects and observed effect sizes and then extrapolate from these simulations. 

For the current power analysis, a result is considered significant if less than 5% of the 

posterior difference distribution of the threshold crosses 0, analogous to setting an alpha value of 

5% in a frequentist power analysis. Furthermore, 100 simulations are going to be run for each 
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subject, trials observed effect size combination to ensure reasonable estimates on the probability 

of rejecting the null hypothesis. To effectively display the raw results of the power analysis and 

facilitate visual comparison of the effects of trials and subjects, the beta distribution is going to be 

used. A beta distribution is going to be used to aggregate and propagate the uncertainty of the 100 

simulations for each effect size. This is done by utilizing that the beta distribution can be 

parameterized with one parameter counting the number of times an event has happened, while the 

other parameter counting how many times this event did not happen. 

Starting with what is analogous to a uniform prior, on the probability of rejecting the null 

hypothesis (Beta (1,1)), it is possible to update this probability density function with the amount 

of significant or non-significant results in the 100 simulations. This updating process will result in 

a probability density function, that contains the information in the 100 binary points 

(i.e. significant or not simulations). Figure 14 shows each trial/subject combination with points 

representing this prior uniform beta distribution being updated by the 100 data-points. 

Several important observations are worth noting when viewing Figure 14. The shape of the 

points, for each trial/subject combination, very closely resembles a psychometric function, where 

both subjects and trials influence the steepness and the location of the function. This suggests that 

increasing the number of subjects, and trials to a lesser extent, has two important features. Firstly, 

it shifts the points towards higher power, with lower effect sizes. Additionally, it seems to increase 

sensitivity to the observed effect size, as evident by the slope of the curve getting steeper, with 

higher number of subjects. Investigating the number of trials’ influence on power, there seems to 

be large diminishing returns. This means that the effectiveness of increasing the number of trials, 

to achieve higher power, is highly dependent on the number of trials itself. In practice and as shown 

in figure 14, increasing trials from 10 makes a big difference in the shape of the function, but the 

difference between high and very high i.e. 100 to 150 trials, has a lesser effect. The tendency of 

the function to be less affected by ever increasing trials is also present for the number of subjects, 

to a lesser extent. 

This observation aligns with the expectation when considering the function at its extremes, 

in terms of trials and subjects. When subject and trial numbers approach infinity, one would expect, 

assuming the model has been shown to become increasingly better with increasing trials (like with 

the ICC metric presented previously), that the model would be able to detect even the smallest 

difference in groups. This would essentially mean that the function would consistently be at y = 1, 
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with x approaching 0 from the positive direction, and then jump to (0,0) in the (observed effect 

size, power) curve, as no difference would entail no power. Conversely, when no subjects or trials 

are present the curve should approach a flat line at y = 0, entailing no power for any amount of 

effect size. Essentially, the function would asymptote to a step function in the limit when x goes 

to 0, and subjects and trials goes to infinity. This can mathematically be written as: 

lim
(𝑠,𝑡)→∞

(𝛹(𝑥, 𝛼, 𝛽, 𝑠, 𝑡) = {
0 if 𝑥 ≤ 0
1 if 𝑥 > 0

) 

where s and t are the number of subjects and trials respectively, and x, 𝛼 and 𝛽 are the observed 

effectsize, the threshold of the psychometric function and the slope of the psychometric function, 

respectively. 

These observations will be used in the next section to extrapolate the results from figure 

14. This will enable the possibility of constructing a model that maps trials, subjects, and effect 

sizes to statistical power. 
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Figure 14 depicts power as a function of observed effect sizes in different combinations of trials and subjects. 

The x-axis represents the observed (& simulated) effect size with the y-axis depicting the statistical power of the 

model, i.e., the proportion of rejected null hypothesis to failed rejections. 

Modeling of power analysis 

Using the information from above, one needs to investigate the latent psychometric function 

describing the relationship between subjects, trials, and effect sizes. Ideally, this psychometric 

function enforces the curve going through the origin, as an observed effect size of 0 should always 
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entail no power. Next the parameters of this psychometric functions, i.e. the threshold and slope, 

need to be parameterized by the number of trials and subjects. This parameterization of trials and 

subjects should ensure that the function moves towards a step function right as x becomes greater 

than 0, when subjects and trials approach infinity. 

Before fitting the general case, used for extrapolation, but also ensuring that a psychometric 

function is well fitting function to the problem, each set of trials and subject combinations are fit 

independently to the parameters of the psychometric function. This involves estimating the 

threshold and slope of the psychometric function for each trial and subject combination. This steps 

makes it possible to ensure that fitted functions pass through the points, depicted in figure 14, 

which will increase confidence in the following type of modeling. 

Several types of psychometric functions might be used for this type of analysis, where the 

goal is out of sample predictability and/or extrapolation. This would mean that the best model 

could be selected based on leave one out cross validation. The ideal model is the model that can 

best describe new data, as we want to use the function for prediction on not already simulated data. 

This is because the overall goal with this power analysis is to use the quite sparsely simulated 

space of trials, subjects, and effect sizes, depicted in figure 14, to inform a model that can predict 

outside the realms, which it has been tested on. Therefore, these models were compared using the 

Pareto smoothed importance sampling leave one out cross validation (Vehtari et al., 2017, 2024; 

Yao et al., 2018). 

Three types of psychometric functions were fit, the cumulative normal, the cumulative 

logistic and the cumulative Weibull function. The main differences between the normal and 

logistic function are that the logistic function has heavier tails than the normal allowing for more 

disperse observations. The difference between the Weibull and the two other functions is that the 

Weibull function is forced through the origin, resulting in a distinct shape compared to the other 

two functions. 

The choice of the cumulative normal or logistic function does not necessarily violate the 

assumptions laid out above. This is due to the way that the parameters are going to be dependent 

on the trials and subjects. This can be understood if one considers an asymptote at 0, for the slope 

and threshold (i.e. a step function also for the cumulative normal and logistic function), when trials 

and subjects move to infinity. This exactly aligns with the observation from above, that the 

psychometric function approaches a step-function (as the slope gets closer to 0) and that the 
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location of this step function approaches x = 0, but never reaches it with increasing trials and 

subjects. 

The results of the preliminary independent analysis on trials and subjects can be seen in 

figure 15, where the independently fit logistic psychometric functions are overlaid on the observed 

data-points from figure 14. The figure highlights a good fit for most of the trials and subject 

combinations (i.e. functions passing through the points). 

 

Figure 15 depicts power as a function of observed effect sizes in different combinations of trials and subjects. 

Lines and shaded area represent the mean and 95 % credibility interval of the independently fit logistic 

psychometric function to each trial by subject combination. 
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Continuous mapping of the power analysis 

Moving to the continuous mapping of subjects and trials, to the psychometric function’s 

parameters. This mapping needs to be defined as a function that relates subjects and trials, to the 

slope and threshold of the psychometric function. As argued above, the steepness increases, and 

the threshold moves to the left with increasing trials and subjects following a pattern of diminishing 

returns. A first choice of this mapping function could therefore be to model the two parameters as 

exponentially decreasing by trials, subjects, together with their interaction. An exponentially 

decreasing function in the complete general case would mean the following relationship. 

𝛩 = 𝛽0 ∗ 𝑒𝑥𝑝(−𝛽 ∗ 𝑋) + 𝛼𝑎𝑠𝑦𝑚 

Here 𝛩 represents the parameters of the psychometric function, where 𝛼𝑎𝑠𝑦𝑚 denotes the 

parameter value when the number of trials and subjects approach infinity. 𝛽 is vector of parameters 

determining the steepness of the exponential decrease from the co-variates in the matrix X, here 

trials subjects and their interaction. The parameter 𝛽0 serve, together with 𝛼𝑎𝑠𝑦𝑚, as the value of 

the parameter when trials and subjects are 0. 

Another formulation of the dependency might be a power law equation, as shown below. 

𝛩 = 𝛽0 ∗ 𝑋
𝛽 

Both approaches can produce the observed behavior, and difference in the two formulations 

depends on the underlying relationship between the parameters and the matrix X (i.e., trials and 

subjects and perhaps their interaction). The exponential equation assumes that as trials and subjects 

increase by a fixed amount, the parameters will decrease by a percentage. The power law on the 

other hand assumes that as trials and subjects increase by a percentage, the parameters will 

decrease by a percentage. 

Several ways of investigating which of these two approaches results in the better fit. Firstly, 

plotting the parameters of the independent fits (figure 15) vs trials and/or subjects, in two different 

coordinate systems, either (log(y), x) or (log(y), log(x)). Which of these coordinate systems 

produces the best-looking linear line would be the best candidate. Supplementary Figure 12 

displays the three function’s parameters fitted independently on each of the two coordinate scales. 

Using this approach no obvious differences were found. 

Another approach involves fitting both types of models, and then comparing them on leave 

one out cross validation as described above. However, this approach revealed problems with 15, 

25 and 3 % of observations for the normal, Weibull and logistic functions, respectively. These 
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percentages were accessed using the pareto k diagnostic value, which was above 1 for these 

percentages of data-points. Essentially, this renders the comparison meaningless (Vehtari et al., 

2024). 

Investigating these functions, the logistic cumulative function produced the least amount 

of problems, with pareto k values. This function was therefore used when fitting trials and subjects 

as continuously informing the parameters of the latent psychometric function. The first model was 

the exponentially decreasing function. Four other models were fitted, with different parameterizing 

of the power law equation. These four models had different approaches to modeling trials and 

subjects and their interaction, as there is no straightforward way of combining X and β. The first 

power law was an additive model, with the following parameterization. 

𝛽0 ⋅ 𝑋
𝛽 = 𝛽01 + 𝑠𝛽1 + 𝑡𝛽2 + (𝑡 ⋅ 𝑠)𝛽3 

The second power law, with a combination of additive and multiplicative operations: 

𝛽0 ⋅ 𝑋
𝛽 = 𝛽01 ∗ (𝑠

𝛽1 + 𝑡𝛽2 + (𝑡 ⋅ 𝑠)𝛽3) 

The third power law was a multiplicative model without an interaction. 

𝛽0 ⋅ 𝑋
𝛽 = 𝛽01 ⋅ 𝑠

𝛽1 ⋅ 𝑡𝛽2 

The last power law was the multiplicative model with an interaction, but defined as the sum of 

subjects and trials as the normal interaction of multiplying trials and subjects would lead to a 

similar model, of the model without an interaction. 

𝛽0 ⋅ 𝑋
𝛽 = 𝛽01 ⋅ 𝑠

𝛽1 ⋅ 𝑡𝛽2 ⋅ (𝑡 + 𝑠)𝛽3 

Comparing these five models, with leave one out cross validation showed that the best model was 

the last power law model, but closely followed by the second power law model, which can be seen 

in table 5. Importantly for these reported models, the diagnostic values were all below 0.7. 
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Table 5. Model comparison of the power analysis models, using Pareto smoothed 
importance sampling leave one out cross validation. Expected log predictive density 
(elpd) difference and standard error between models is depicted in the second and 

third column and the absolute ratio between these in the fourth column. The Higher the 
elpd-ratio the bigger the scaled difference (scaled by the uncertainty) between the 

models and the more confident one might be that one model outperforms the other. 

 

models elpd_diff se_diff elpd_ratio 

logs_power 0.00 0.00  

addititve_multipli
cative 

-10.06 4.65 2.16 

logs_power_noint -35.91 8.87 4.05 

logs_expo -85.86 15.74 5.45 

additive -820.02 37.48 21.88 

 

 

Table 5 indicates that as the trials and subjects increase by a percentage, the parameters of 

the psychometric decrease by a percentage, as the top two models, which are both variations of the 

power law. To verify that the tested models capture the underlying simulation, Figure 16 displays 

the winning model superimposed on the data, with 95 credibility intervals of the mean. As seen, 

this closely resembles the individual independent fits, with the most drastic deviation in the 5 

subjects and 10 trials condition. 
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Figure 16 depicts power as a function of observed effect sizes in different combinations of trials and subjects. Lines 

being the dependently fit logistic psychometric functions to each trial by subject combination. With the shaded area 

being the 95-credibility interval. 
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Figure 17. Marginal posterior distributions for the winning model’s parameters 

The marginal posterior distributions of the parameters of the winning model are displayed in figure 

17. This means that the best the underlying function transforming trials, subjects and observed 

effect sizes into probabilities of rejecting the null hypothesis of no difference in threshold, follows: 

𝛹(𝑑obs, 𝛼, 𝛽 ∣ 𝑡, 𝑠) =
1

1 + exp(−
1

𝛽(𝑡, 𝑠)
⋅ (𝑑obs − 𝛼(𝑡, 𝑠)))

 

Where 

𝛽(𝑡, 𝑠) = 𝛽𝐼 ⋅ 𝑠
𝛽1 ⋅ 𝑡𝛽2 ⋅ (𝑡 + 𝑠)𝛽3 

𝛼(𝑡, 𝑠) = 𝛼𝐼 ⋅ 𝑠
𝛼1 ⋅ 𝑡𝛼2 ⋅ (𝑡 + 𝑠)𝛼3 

Each of these parameters are given by the distributions depicted above (figure 17). 
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Utility of the power analysis 

As alluded to in the initial section of the power analysis, the work presented here should be able 

to help an independent researcher. It should do this by helping to determine the probability of 

rejecting a particular observed effect size, given trials and subjects, even outside the realm of 

simulations presented here. However, for a researcher to utilize this function to calculate the 

probability of rejecting a null hypothesis, given a particular effect size in the population, further 

assumptions need to be made. This is because the effect size when conducting an experiment is 

not a fixed quantity. 

In practice, this means that when conducting an experiment, we observe an effect size that 

is assumed to be drawn from a latent effect size distribution in the population. Mathematically, 

this means that the observed effect size that in an experiment is a random variable. The mean and 

standard deviation of this random variable is given analytically by Cohen, but could also be derived 

from bootstrapping (Goulet-Pelletier & Cousineau, 2018; Hedges & Olkin, 2014; Lakens, 2013). 

Below are the equations for the mean and standard deviation of the effect size measure used in the 

power analysis. 

𝜇𝑑𝑟𝑚 = 𝜇𝛿 ∗
√2 ∗ (1 − 𝜌)

√𝑉𝑎𝑟1 + 𝑉𝑎𝑟2 − 2 ∗ 𝜎1 ∗ 𝜎2 ∗ 𝜌
 

𝜎𝑑rm
= √

1

𝑛
+
𝜇𝑑𝑟𝑚
2

2 ⋅ 𝑛
 

The equation for the mean effect size 𝜇𝑑𝑟𝑚  is mathematically identical to the definition shown in 

the “Power analysis” section. The standard deviation of the random variable 𝜎𝑑rm
, is defined as a 

function of the number of subjects n and the size of the effect itself 𝜇𝑑𝑟𝑚 . Assuming that the effect 

size is normally distributed: 

𝑑𝑜𝑏𝑠 ∼ 𝑁(𝜇𝑑𝑟𝑚 , 𝜎𝑑𝑟𝑚) 

The probability of rejecting (R) this sampled effect size (𝑑𝑜𝑏𝑠) is given by the function that was 

obtained above. 

𝑃(𝑅 ∣ 𝑑𝑜𝑏𝑠) = 𝛹(𝑑obs, 𝛼, 𝛽, 𝑡, 𝑠) 

Ideally the probability of observing a particular effect size AND reject the null hypothesis given 

this observed effect size is seeked. Probability theory, particularly conditional probabilities, gives 

us the relationship between these quantities. 
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𝑃(𝑅 ∣ 𝑑𝑜𝑏𝑠) =
𝑃(𝑅 ∩ 𝑑obs)

𝑃(𝑑obs)
 

Here 𝑃(𝑅 ∩ 𝑑obs) represents the probability that we are interested in, i.e., rejecting AND observing 

a particular effect size. 

𝑃(𝑅 ∩ 𝑑obs) = 𝑃(𝑅 ∣ 𝑑𝑜𝑏𝑠) ⋅ 𝑃(𝑑obs) 

Integrating over all possible values of the effect size is necessary to integrating out the effect size, 

i.e., marginalizing. 

𝑃(𝑅) = ∫ 𝑃
∞

−∞

(𝑅 ∣ 𝑑obs) ⋅ 𝑃(𝑑obs) 𝑑(𝑑obs) 

Which becomes: 

𝑃(𝑅) = ∫ 𝛹
∞

−∞

(𝑑obs, 𝛼, 𝛽, 𝑡, 𝑠) ⋅ 𝑁(𝜇𝑑𝑟𝑚 , 𝜎𝑑𝑟𝑚) 𝑑(𝑑obs) 

Instead of trying to analytically solve this integral, one can leverage computational resources to 

approximate it. This can be done by taking draws of the normal distribution of the observed effect 

size, and then applying them through 𝛹(𝑑obs, 𝛼, 𝛽, 𝑡, 𝑠). The result of such calculation will give 

draws from a probability distribution of rejecting the null hypothesis, i.e., P(R). The last step is to 

calculate the proportion of rejected null hypotheses (p < 0.05), to the total number of draws. Which 

would entail the power of the study, assuming the mean difference and variance in the two sessions. 

Sampling variability of the effect size. 

The above high-level explanation of calculating power for an experiment might be quite difficult 

to understand, and therefore implement for independent researchers. To make this more accessible, 

I will demonstrate below how this can be done using the concepts described above. The next 

section will provide a practical understanding of the parts that should go into a power analysis and 

how different factors will influence power. 

Firstly, I’ll examine and show the influence, and need, for the sampling distribution of the 

observed effect sizes. To demonstrate this, it is assumed that the group mean difference of the 

threshold in the psychometric function is -5, and the variance in the second session is 1.5 times the 

variance of the first session. These assumptions entail that the intervention increases the variation 

in the threshold, but that there is a clear effect of the intervention of the threshold. The assumptions 

for the choice of mean difference and difference in variance can be visualized by repeated sampling 

from a multivariate normal distribution with the following parameterization: 



Name: Jesper Fischer Ehmsen   AU-ID: 645332               Study number: 201910213 

 67 

(
𝑥𝑖
𝑦𝑖
) ∼ 𝒩 ((

𝜇1
𝜇2
) , [

𝜎1
2 𝜎1 ⋅ 𝜎2 ⋅ 𝜌12

𝜎1 ⋅ 𝜎2 ⋅ 𝜌21 𝜎2
2 ]) 

Here 𝜇1 and 𝜎1 are given by the re-analysis of the experimental data and were -8, 8 respectively. 

Given the assumptions above, 𝜇2 and 𝜎2 become -3, 10. The number of subjects is then varied by 

only drawing a particular number of random variables from this multivariate normal (𝑠 ∈

(10,40,70,100)). To also investigate the effect of the correlation coefficient 𝜌 on the distribution 

of effect sizes i.e. 𝑝(𝑑𝑜𝑏𝑠), this parameter is also varied (𝜌 ∈ (0,0.3,0.6,0.9)). 

The results of this simulation can be seen in figure 18. Here it is shown that both the sample 

size i.e. subjects, but also the correlation coefficient between the sessions is important for the 

variances of the observed effect size. 

 

Figure 18. Sampling distributions of effect sizes across subjects (facets) and session by session correlations (colors) 

Now, it is possible to visualize how these observed effect size distributions fit into the 

probability of rejecting the null hypothesis, i.e., 𝛹(𝑑obs, 𝛼, 𝛽, 𝑡, 𝑠). Note, the observed effect size 
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distributions above are not dependent on the number of trials, in the experiment. The function 

derived above from the continuous power analysis incorporates this information, together with 

other factors, that might change the power of the experiment, given an observed effectsize 

distribution. As shown above, the implications of the function 𝛹(𝑑obs, 𝛼, 𝛽, 𝑡, 𝑠) can be visualized 

as psychometric functions in a (𝑑obs , 𝛹(𝑑obs, 𝛼, 𝛽, 𝑡, 𝑠)) coordinate system with trials and subjects 

being fixed. Another more informative way to investigate varying number trials and subjects, is to 

visualize these implications in a 3-dimensional grid of (Subjects, 𝑑obs , 𝛹(𝑑obs, 𝛼, 𝛽, 𝑡, 𝑠)) with 

facets being a particular set of trials. This visualization can also serve the purpose of projecting 

the above distributions (figure 18), unto the space of 𝛹(𝑑obs, 𝛼, 𝛽, 𝑡, 𝑠). 

Figure 19 displays the projection of the histograms from Figure 18 as ellipse, where the 

vertical width of the ellipse (the major axis) is given by the 95% Highest density interval of the 

histograms and the horizontal width (the minor axis) is for visualization purposes. In Figure 19, it 

is shown how the correlation coefficient, the number of subjects as well as the number of trials, 

affect the power (the background color), given an observed effect size. 
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Figure 19. Visualization of how the power of a particular study, where the mean difference between threshold is 

assumed to be 5 and the variance of the difference being 12. The power of the experiment (background), is informed 

by the session-by-session correlation of the parameters, displayed as the color of the sampling distribution of the 

observed effect sizes (ellipses). Furthermore, the Figure shows how the number of trials and subjects include the 

power of the study. Subjects increase the power of the study while also decreasing the sampling variability (width of 

ellipses), whereas trials only increase the power of the study. Trials effect on power can be seen by investigating the 

upper left corner of the plots in the four facets, here one can observe that the background color turns more yellow as 

trials increase. 
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Practical implementation of the power analysis 

Now, considering a practical example of a researcher wanting to conduct a power analysis, 

utilizing the simulation and modeling from above. Two assumptions have been made: either a 

mean effect size or a mean difference of the intervention is assumed, and the variance introduced 

by the intervention. Below, I investigate a mean difference of the intervention of 4 in threshold, 

and that the intervention does not increase variability, i.e., the variance in both groups is assumed 

equal. To fully appreciate the power of this approach, one could even imagine sampling these 

values as random variables, and not as point estimates (Not done here). Using the effect size 

equations above, it is possible to derive the mean difference and therefore simulate observed effect 

sizes which are then put into 𝛹(𝑑obs, 𝛼, 𝛽, 𝑡, 𝑠) and the probability of rejecting that draw is 

calculated. This process is repeated over the 4000 draws of the posterior distribution of the 

parameters of 𝛹(𝑑obs, 𝛼, 𝛽, 𝑡, 𝑠). Lastly, calculating the ratio of rejected to failed rejected null 

hypotheses gives the estimate of statistical power. In the case of not including the sampling 

varability (prior probability) of the observed effect size, the effect size estimate is just repeatedly 

entered as 0.5 (calculated from the assumptions of a mean difference of 4 and no varability change 

in the intervention). This idea of not including the sampling varability, is equivalent to 

investigating a minimum effect size of 0.5 being deeemed the minimum effect size of interest. 

Figure 20 depicts a grid of subjects X trial that spans the space of power to reject the null 

hypothesis, here the observed effect size has been “integrated” out. This integration was done with 

either a constant of 0.5 (left column) or with a normal distribution with a mean of 0.5 and a variance 

of 
1

𝑛
+

0.52

2⋅𝑛
, with n being the number of subjects. As a reference frame the red dashed line in figure 

20, at subjects = 25, depicts the results from plugging the same assumptions, here 𝜇1 = −8 𝜎1 =

8 𝜇2 = −4 and 𝜎2 = 8 and 𝜌 = 0.54, into the statistical software tool G*power (Faul et al., 2007). 
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Figure 20. Displays the grid of subjects X trials to obtain a particular level of statistical power (background) given a 

group level difference of 4 and equal variance. Left column displays an analysis omitting sampling variability (a 

minimum effect interesting effect size calculation), with the right column including sampling variability.  



Name: Jesper Fischer Ehmsen   AU-ID: 645332               Study number: 201910213 

 72 

Discussion 

The thesis has investigated improvements in uncertainty handling in the field of cognitive science, 

particularly in the developing field of cognitive modeling. This was done with the use of 

simulations, highlighting that a deep mathematical understanding is not necessary to understand 

and/or do calculations with uncertainties. The thesis outlined three types of uncertainty; 

measurement uncertainty being the lowest level, often overlooked or disregarded in the field, 

despite of the unpredictable influence it can have on the resulting statistical metrics. Researchers 

should firstly be aware of measurement uncertainty and examine the extent to which it can be 

safely ignored in their statistical models. Even in measures like reaction times, commonly used in 

Cognitive Science (MacLeod & Dunbar, 1988; Pirolli & Anderson, 1985; Sternberg, 1969), 

measurement uncertainties are present, and depend on the soft and hard-ware the experiment 

(Crocetta & Andrade, 2015; Holden et al., 2019; Ohyanagi & Sengoku, 2010). 

Estimation uncertainty, introduced as the uncertainty associated with doing computations, 

is often displayed as the standard error of statistical metrics. The main focus of the thesis was to 

investigate this type of uncertainty in the field of cognitive modeling and revise some of the 

statistical metrics used to validate a particular model. This was demonstrated using a psychometric 

function, that maps stimulus values to probabilities by three parameters the threshold (𝛼), slope 

(𝛽) and (𝜆). It was argued that the statistical metric commonly used, the correlation coefficient, 

between simulated and recovered parameters values was not a sensible metric to determine the 

extent of internal model validity (Schurr et al., 2024). Two important aspects of the correlation 

coefficient made it insensible for internal model validity. Firstly, the decision of choosing what 

size of correlation coefficient should be deemed enough, is not straightforward, because the 

interpretation of the correlation coefficient itself in the regard of model validation is not 

straightforward. This is particularly true when highlighting that the correlation coefficient is 

invariant of a linear transformation. Secondly, it was shown that in instances where the simulated 

and recovered parameter values did show good dependency, the correlation coefficient rapidly 

approached an asymptote at 1. This occurred when more information could be gained by increasing 

the number of trials, demonstrating its limited inclusion of the estimation uncertainty. The thesis 

therefore suggested using a variant of the intra class correlation coefficient (ICC) as the statistical 

metric for examining internal model validity, as recently proposed in the literature (Schurr et al., 

2024). 
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It was shown that the ICC metric was more sensitive to estimation uncertainty in the 

parameters, with a sensible interpretation of the ratio between desirable and undesirable 

uncertainty. With this new metric, the thesis explored ways to decrease the undesirable uncertainty 

and thereby increase the ICC metric. Two ways were investigated, revolving around either 

incorporating smart experimental designs that are optimized for each individual or incorporating 

reaction times into the cognitive model. These methods are neither mutually exclusive or 

incompatible and could be implemented in experiments to decrease estimation uncertainty, in the 

parameters of the psychometric function. 

The second approach of jointly modeling several dependent variables and their 

interactions, has been incorporated in the cognitive modeling literature for quite a while, however 

is now slowly re-gaining traction (Hess et al., 2024; Pedersen et al., 2017; Stone, 2014). What 

these two methods have in common is that they do not increase the efficiency of the study by 

increasing trials, which is usually is the default for decreasing estimation uncertainty of subject 

level parameters. 

The obvious problem with increasing the number of trials is resource costs. This is both in 

terms of money, but also in the time spent for the participant and the experimenter. From an ethical 

perspective, this is especially true of the time investment from the participants’ side, and 

particularly when patient populations are investigated. However, the most problematic aspect of 

mindlessly increasing the number of trials, becomes more obvious when we carefully consider 

what we are studying. In Cognitive Science, we are studying a complex system that has its own 

goals, desires, and motivations, and it is not trivial to know how this participant will behave if the 

task is twice as long. Will the participant employ a different strategy, knowing that the experiment 

is going to take longer, or will they halfway through the experiment employ a different strategy, 

due to boredom. Even if participants keep the same underlying cognitive strategy, that we are 

trying to model, then one would still expect that attentional lapses increase and overall engagement 

in the task to decrease. This would entail that each additional trial, perhaps after a certain point, 

would be less informative. The thesis went on to investigate the last type of uncertainty, test-retest 

uncertainty, by re-examining a data-set from a test-retest reliability study. Here it was shown that 

a re-analysis of the original data could achieve better test-retest reliability. This was done by 

incorporating knowledge about the structure of how the data was gathered, together with 

incorporating information already represented in the data i.e. reaction times. 



Name: Jesper Fischer Ehmsen   AU-ID: 645332               Study number: 201910213 

 74 

The re-analysis was then used to exemplify of how a power analyses of a cognitive models 

can be conducted. This was achieved by simulating and then fitting the cognitive model to different 

observed effect sizes in combinations of different trials and subject. This approach allowed for 

modelling of the latent power curve, relating observed effect size, trials, and subjects to the 

probability of rejecting a null hypothesis, in an experiment. Using posterior predictive checks and 

leave one out cross validation, a particular power law related the parameters of the power curve, 

to subjects and trials with good predictive abilities. With this analysis it was shown that the number 

of trials in an experiment, can be added to a power analysis, which is not standard practice in 

widely used statistical software tools like G*power (AARTS et al., 2015; Faul et al., 2007; 

Ioannidis, 2005). This power analysis showed that G*power’s estimation of sample size for the 

purposed test, was more liberal requiring 25 subjects, whereas the full uncertainty propagated 

power analysis, based on simulations from the fitted model, suggested approximately 30 subjects. 

Crucially, this was only the case if the number of trials were larger than at least 150. 

The rest of the discussion of the current thesis will revolve around the implications of 

improperly accounting for uncertainties in science and how this might be a contributing factor to 

the replication crisis. 

Power analyses, certainty, and replication crisis. 

In recent years, some scientific fields especially psychology, social science and medicine, have 

been under scrutiny due to a lack of and failure of replication of previous studies (Forbes et al., 

2023; Wiggins & Christopherson, 2019). Many contributing factors have been identified, such as 

publication bias and questionable research practices (QRP). These QRP, involves p-hacking 

(conducting statistical analyses until significant) or HARKing (hypothesizing after the results are 

known) (Head et al., 2015; Kerr, 1998). 

A quite paradoxical aspect of the replication crisis is the use of power analyses, which are 

advised as a means to increase replicability. The argumentation of conducting power analyses 

before data collection, is that many studies in social science generally have low to very low power, 

to detect a small to medium effect size (Felix Singleton & Fidler, 2023). Power analyses are 

therefore promoted, to ensure sufficient statistical power to detect the size of the effect of interest. 

The argument is sound if the analysis of statistical power is accurate or accurate enough. What this 

thesis has highlighted is that the use of very popular tools like G*power, for conducting these types 

of power analyses, underestimate the number of subjects needed, by not including the effect of 
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trials in the estimation process. Therefore, the assumption from above might be misleading and 

problems might arise where researchers have too much confidence in their experiment, due to 

having conducted a power analysis, then is actually justified, hence the paradoxical aspect. This 

mimics the false sense of certainty on measurements, that are assumed by this popular software or 

measurements in Cognitive Science in general. Therefore, instead of increasing replicability and 

certainty in the effects observed, utilizing these tools might paradoxically decrease them, as 

researchers might be tricked into conducting less powered studies, due to the recommendations of 

the software. 

Ways of combating the replication crisis. 

A significant number of scientists have suggested to move the arbitrary statistical significance 

threshold from 0.05 to 0.005, to combat the replication crisis (Benjamin et al., 2018). Interestingly, 

lowering of the statistical threshold for significance would, in principle, lead to the conclusions 

drawn from this thesis of including and propagating uncertainty. The comparability of these two 

approaches depends on the structure and uncertainty of the data. However, in most cases including 

and propagating uncertainties, would have the effect of lowering the resulting statistic and 

therefore increasing the resulting p-value. These two approaches, i.e. increase the statistical 

significance threshold or properly propagating uncertainty, have very different reasons, even 

though they share the same goal. Lowering of the significance threshold would be a means to an 

end, instead of addressing the underlying problems, which the authors also do acknowledge 

(Benjamin et al., 2018). 

Another interesting idea that coincides with the general theme of the thesis, and to combat 

the replication crisis, is that of preregistration, registered reports, and blind analyses (Chambers & 

Tzavella, 2022; Evans et al., 2023; Klein & Roodman, 2005; MacCoun & Perlmutter, 2015). The 

common theme of these interventions is that they acknowledge the subjectivity not only the data 

collection, but also in the data analysis pipeline. This subjectivity is both what introduces biases, 

but also what drives novel ideas, meaning that it becomes a trade-off between exploration and 

exploitation. This trade-off needs to be addressed, to partly guard against unwanted subjectivity. 

The interventions guard against this unwanted subjectivity by having the analysis pipeline either 

fixed before data collection or scrambling the data such that the results of the analyses cannot be 

known when producing the analysis pipeline. The rigorous checking, testing, and validating of 
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cognitive models shown here is not at stake with these interventions, but instead facilitates them. 

This is because most of the checking, testing and validation should be done on simulations. 

However, there are still considerations when analyzing experimental data, especially on 

the model convergence side, where in or excluding covariates or reparameterization of the models 

might be necessary. In this regard, the blind analysis intervention might be a valuable insight from 

physics. Here the experimental data is scrambled in various ways, such that models and analysis 

pipelines can be done on data that resembles the collected data, but without being able to know the 

results before the data is un-blinded (Klein & Roodman, 2005; MacCoun & Perlmutter, 2015). 

Decisions are therefore made on scientific justifications, instead of on completely subjective 

criteria that could make the experimental results fit a research paradigm or perhaps even worse, 

produce significant results, where none are present. While the distinction between decisions based 

on scientific justification and subjective nonsense may be fuzzy and narrow, interventions, like 

those described, can help mitigate unwanted incentives such as publishing pressure and the 

temptation to fit results to a particular research paradigm or hypothesis (Quaia & Vernuccio, 2022). 

This approach could give rise to more rigorous methods and analysis pipelines, as it hinders 

arbitrarily stopping the development of the pipelines, when the results fit the preconceived notions 

of a scientific paradigm. Instead, it forces researchers to stop only when they are satisfied with the 

assumptions and implementations made. This process might also help researchers understand the 

uncertainty that is associated with many of the methods or practices commonly used in the 

literature. 

Why and how computational tools are becoming vital in science. 

Cognitive or even computational modeling could serve as a fresh start needed in the sciences that 

have been troubled by the replication crisis. The more sophisticated models embedded in these 

frameworks might be the steppingstone to engage in more theoretically driven analyses, hopefully 

reducing the number of non-reproducible studies. However, for this movement to succeed, it is 

essential that rigorous metrics are enforced to assess the model’s internal validity. Models lacking 

any type of internal validity or identify-ability can therefore be discarded from the beginning. 

There may be instances where mathematical formulation of theories are developed, but that in 

practice the formulation is computationally intractable. It would be a shame to spend years 

investigating these kinds of models, and their implications in a field of research, only to discover 

that the model is intractable in practice (Ho & Griffiths, 2021; McClelland, 2009; Zuidema et al., 
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2020). One might think that a deeper mathematical understanding is a necessity for understanding 

and building these more complicated models. However, what this thesis has argued is that this is 

not necessarily the case, simulations allow researchers to observe the implications of their 

assumptions. Another argument for why more sophisticated models are not necessarily off the 

shelf due to high level mathematically understanding is the increase in adaption of sophisticated 

hierarchical models which are mathematically much more complex than single level models, yet 

they have been widely adopted in the literature (Dedrick et al., 2009). 

This is not to say that a better understanding of the machinery and mathematics itself would 

not be beneficial, but perhaps no longer a necessity. This would therefore also imply that the way 

that statistical methods and tools are taught might need to change. In fields where mathematical 

methods are not commonplace, students and researchers could be taught statistical methods with 

the use of coding and simulation examples, instead of flowcharts for which statistical analysis to 

conduct when. This would involve providing individuals with the tools for understanding and 

reflecting on these statistical models and their assumptions. This is like how a good scientific 

program does not merely teach students the right theories or hypotheses, but rather teaches them 

to think in a scientific way, such that the individual can decide and test these themselves. In this 

context the tools for understanding, reflecting, and experimenting with statistical models and 

concepts, would be programming experience in statistics. This would allow the researcher to more 

concretely grasp the assumptions that are being made but would also provide the tools for 

examining what happens when they are broken. Moreover, this framework would also necessitates 

a more generative approach to modeling, making the researcher more closely engaged in the 

statistical process of analyzing the data, instead of just picking an off the shelf model from a 

flowchart (Velarde Camaqui & Díaz Méndez, 2023). 

Standing on the shoulders of giants 

All of the models used in the current paper were fitted using Stan with the cmdstanr interface, 

which uses full Bayesian statistical inference with Markov chain monte Carlo sampling (Gabry et 

al., 2024). As described in the section about modeling definitions, fitting, and building models in 

this framework is extremely flexible. An additional benefit of this framework is that the code for 

simulating the generative process is close to identical in nature, to the code that specifies the model. 

This similarity makes it easy for users with a generative framework to code up these types of 

models. The additional benefits to using Stan and its Hamiltonian Monte Carlo (HMC) algorithm 
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is that when issues arise the algorithm will complain. This helps reduce the risk for erroneous 

inference, due to the sampling algorithm or typos in the code (Vehtari et al., 2021). 

The thesis used Bayesian inference and Stan, due to its flexibility in model formulation, 

rather than the inherent differences between Bayesian and frequentist statistics. However, 

Bayesian inference does allow for a more optimistic way to interpret the replication crisis 

discussion above. Instead of starting each experimental analysis from the perspective that nothing 

or very little is known about the parameters of interest, perhaps incorporating information from 

previous studies would be beneficial. This is what the priors in the Bayesian inference scheme 

identifies. This is in essences what science is about, a hierarchical organization of knowledge, 

where each step rests on the step below, i.e. on auxiliary assumptions as put by the Duhem–Quine 

thesis (Ariew, 1984). Here priors can be thought of as in the top level of the hierarchy, that then 

informs the lower-level implications, but that the strength and location of these priors are informed 

by lower levels, i.e., empirical evidence. This view on science also matches that of uncertainties, 

as these are also hierarchically organized. So, in the same way that the result of a scientific theory 

is only as strong as its auxiliary assumptions; the strength of an analysis, that builds on a theory, 

is also only as strong as the (un)certainty of the data. 

What the Bayesian inference allows is that prior information from similar studies can be 

used in modelling, allowing researchers to not start their scientific studies from scratch, but pick 

up where others left off. This would essentially entail, instead of collecting a larger number of 

subjects to achieve the desired statistical power, this could be done by two independent 

laboratories. Here we can think that the second laboratory uses the information provided by the 

first in their priors. This essentially is already what is being done when conducting meta-analyses. 

This approach incentives publications of all types, as the findings of one researcher would serve 

as a stepping stones for the next, making the problem of publication bias, where null findings are 

unpublished, less incentivized (Laitin et al., 2021). 

Limitations 

One of the main focal points of the thesis was investigating the correlation coefficient as a 

statistical metric for internal model validation of cognitive models. It was shown that a modified 

version of the intra class correlation was more sensible as a statistical metric for model validation. 

However, due to limitations on time and computational resources, no analysis was conducted, 

comparing these statistical metrics to the power analysis displayed in Figure 20. Future studies 
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should investigate the link between how these metrics behave and compare them to the power 

analysis conducted. A clear link between these quantities would make the need for conducting a 

power analysis superfluous, as one could imagine that the information for a power analysis could 

be contained in the validation analysis. A thorough investigation of this link would mean that the 

somewhat arbitrary choice of trials, when designing an experiment, would no longer be arbitrary. 

It would instead be informed by how estimation uncertainty in the parameters of interest, change 

based on the number of trials (Miller, 2024). 

Another limitation of the current study is the limited power analysis conducted. Ideally, 

the thesis would have investigated other parameters of the psychometric function. A particular 

interest would be on the slope of the psychometric function, as it was shown that changes to this 

parameter changes the estimation uncertainty of all the other parameters. One might suspect that 

an intervention that increases the steepness of the slope, would also make it easier to detect a 

change in the threshold. As both the correlation coefficient and ICC metric showed that with 

increased steepness of the function, less estimation uncertainty was present in the threshold. This 

highlights how the parameters of the model interact, which can be accounted for by performing 

these simulations. Therefore, future investigations should expand upon this power analysis to 

include other parameters, especially the slope of the psychometric function. 

Future studies should also investigate how incorporating the reaction times into the power 

analysis would change the statistical power function. This research would not only help elucidate 

the question posed above, about the relationship between the internal model validation metric, 

trials and power, but could also give an estimate of the increased efficiency pf incorporating 

information already present in most experiments. The reasoning for only conducting the single 

power analysis on the threshold in the current thesis highlights one of the main hurdles of the 

framework purposed: computational resources. Fitting models using HMC and Bayesian inference 

is both time and computational resource intensive, compared to frequentist inference in packages 

such as lme4, lmertest or GAMLSS implemented in R (Bates et al., 2015; Kuznetsova et al., 2017; 

Stasinopoulos & Rigby, 2008). This additional invested time for doing computation can partly be 

negated with an access to bigger machines. Here parallelization of the computational burden, 

especially when several chains are needed to ensure convergence, is essential. Fortunately, the 

access to bigger machines, both privately but also on an institutional level, is something that is 

growing in accessibility and already available to many universities or research centers. This 
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increase in computational availability has also been correlated with research competitiveness 

(Apon et al., 2010). 
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Supplementary material 

Supplementary analysis 1 

As mentioned in the main text, introducing measurement uncertainty or any type of uncertainty 

into statistical metrics and easily be done using bootstrapping / re-sampling. Here I will 

demonstrate an example from a simple linear regression analysis with 3 parameters an intercept, a 

slope and a residual variance. To do this we consider an idealized example of a fictional researcher 

wanting to understand the relationship between reaction times and stress while incorporating all 

types of uncertainty. To do this the researcher conducts an experiment where participants are 

measured several times under different conditions to introduce stress. In this example both of these 

measures have associated uncertainty, see the individual data points in the Supplementary analysis 

Figure 1. The relationship between reaction times and stress is determined by the slope of the 

regression line depicted in the Supplementary analysis Figure 1. Estimation uncertainty can thus 

be thought of as the uncertainty in the parameter estimates achieved by fitting a linear model to 

the data. See the linear model in Supplementary analysis Figure 1. Finally, test re-test uncertainty 

can be thought as when the researcher’s study on reaction times and stress is tested twice on 

different days to understand how stable the relationship is over time. As the relationship is 

measured by the parameters of the model the stability of the relationship is measured by the 

stability of the parameters. One might imagine that the amount of sleep acquired before the 

experimental day could influence both measures of the task i.e. reaction time and susceptibility to 

stress and perhaps even their relationship. Supplementary analysis Figure 2 displays how the 

parameter estimates of the same model as presented in Supplementary analysis Figure 1 with and 

without accounting for uncertainty propagation change based on the propagation of uncertainty. 

As can be seen from Supplementary Analysis Figure 1 accounting for the measurement uncertainty 

does not change much the prediction made by the model, however when propagating these extra 

uncertainties into the next analysis of the parameters i.e. from session to session in Supplementary 

analysis Figure 2 the change in results become more pronounced. The main effect for the current 

linear model is that the residual variance (sigma) and the intercept is underestimated without error 

propagation and the slope parameter is overestimated. 
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Supplementary analysis Figure 1: Measurement and Estimation uncertainty. The figure displays a linear 

regression between two measurements of for instance reaction time and stress with measurement uncertainty 

depicted as vertical and horizontal error bars on individual points. The mean of the regression line with and without 

propagated uncertainty is highlighted in grey and dark green respectively. Lastly a prediction interval is depicted as 

the shaded area around the mean of the regression line with and without propagated uncertainty again in grey and 

green respectively. The difference between the green and grey lines are therefore the difference between accounting 

for measurement uncertainty and not accounting for it. 
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Supplementary analysis Figure 2, Test-retest uncertainty. Displays the results of fitting the linear regression in 

Figure 1 twice, with and without accounting for measurement uncertainty. Each facet represents one of the three 

parameters of the linear model, the intercept the residual uncertainty (sigma) and the slope respectively from left to 

right. Colors represented weather the measurement uncertainty was propagated or not. 
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Supplementary Figures 

Supplementary figure 1 

 

Supplementary figure 1 Comparison of analytical and bootstrapping correlation coefficient. Histograms of the 

difference between different metrics of the correlation coefficient when bootstrapping and analytically calculating 

the correlation coefficient. Facets show the different used metrics when evaluating the correlation coefficient i.e. the 

mean, the 2% quantile and the 97% quantile. colors represent the sample size, i.e. the number of datapoints the 

simulated correlation coefficient was based on. 
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Supplementary figure 2 

  

Supplementary figure 2. Comparison of analytical and bootstrapping correlation coefficient. Points depicting 

the differences in estimated correlation coefficient using bootstrapping and the analytical solution for thee measures 

of the correlation distribution i.e. mean (dif_mean), 2% quartile (dif_q) and the 97% quartile (dis_q97). X-axis 

represents the number of data points simulated with the colors depicting the simulated size of the correlation 

coefficient. 
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Supplementary figure 3    

 

Supplementary figure 3 Parameter recovery of the psychometric function for all four parameter recovery 

metrics investigated. That is the correlation coefficient with and without uncertainty propergation and ICC1, 

ICC2. 
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Supplementary figure 4 

 

Supplementary figure 4. Parameter recovery of the psychometric function using the intra class correlation 

coefficient. Identical to supplementary figure 3, but only for the intra class correlation coefficient, but 

stratified by number of subjects. 
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Supplementary figure 5 

 

Supplementary figure 5. Parameter recovery of the psychometric function for the Correlation coefficient 

metrics. Identical to Supplementary figure 4, however instead of investigating the ICC here the correlation 

coefficient is depicted. True and False in the colors highlight whether uncertainty has been propagated. 



Name: Jesper Fischer Ehmsen   AU-ID: 645332               Study number: 201910213 

 100 

Supplementary figure 6 

 

Supplementary figure 6. Pairwise scatter plot of simulated vs estimated slope values for steep slopes (beta = 1 

(red)) and shallow slopes (beta = 3 (blue)). Figure shows how increases in trials (left to right) increases the 

degree to which points all close to the identity line (black line). 



Name: Jesper Fischer Ehmsen   AU-ID: 645332               Study number: 201910213 

 101 

Supplementary figure 7 

 

Supplementary figure 7. Parameter recovery of the psychometric function for the correlation coefficient (y-

axis) for each parameter (columns) in each combination of including and not including rts and its size (color) 

and the simulated mean slope (rows) for differing number of trials x-axis. 
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Supplementary figure 8 

   

Supplementary figure 8. Group level posterior predictive checks of the 3 types of responses, Confidence, 

binary (faster or slower) and reaction time on the binary response for the Nested Hierarchical model. Facets 

represent the 3 types of responses, 0-1 Confidence ratings, 0 or 1 binary responses of (faster or slower) and the 

reaction time for these binary responses. Red line depicts the mean of the posterior and the blue lines represents 100 

posterior draws.  
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Supplementary figure 9 

 

Supplementary figure 9. Single subject level posterior predictive checks of the 3 types of responses, 

Confidence, binary (faster or slower) and reaction time on the binary response for the Nested Hierarchical 

model. Facets represent the 3 types of responses, 0-1 Confidence ratings, 0 or 1 binary responses of (faster or 

slower) and the reaction time for these binary responses. Red line depicts the mean of the posterior and the blue lines 

represent 100 posterior draws. Black points represent the actual responses of the participant. 
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Supplementary figure 10 

 

Supplementary figure 10. Group level posterior predictive checks of the 3 types of responses, Confidence, 

binary (faster or slower) and reaction time on the binary response for the non-nested Hierarchical model. 

Facets represent the 3 types of responses, 0-1 Confidence ratings, 0 or 1 binary responses of (faster or slower) and 

the reaction time for these binary responses. Red line depicts the mean of the posterior and the blue lines represent 

100 posterior draws. 
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Supplementary figure 11 

 

Supplementary figure 11. subject level posterior predictive checks of the 3 types of responses, Confidence, 

binary (faster or slower) and reaction time on the binary response for the non-nested Hierarchical model. 

Facets represent the 3 types of responses, 0-1 Confidence ratings, 0 or 1 binary responses of (faster or slower) and 

the reaction time for these binary responses. Red line depicts the mean of the posterior and the blue lines represent 

100 posterior draws. Black points represent the actual responses of this participant. 
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Supplementary figure 12 

 

Supplementary Figure 12. Parameters estimates of the individually fit psychometric functions (columns) on trials 

and subjects. The top row depicts a (log(y),x) coordinate system whereas the bottom row depicts a (log(y), log(x)) 

coordinate system. A straight line relationship between subjects (trials) and the log of the parameter value (top row) 

would indicate exponential relationship whereas a straight line in the log; log coordinate system would imply a 

power law relationship in the native (x,y) space. 
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Supplementary tables 

Supplementary table 1 

see Supplementary table 1 which is linked to the github of the thesis. As the table is too big to 

show on a single page. 

Supplementary table 2 

Table supplementary 2: Group mean parameter distributions of Binary test re-test re-
analysis. Summary statistics of the group mean parameters of the Binary hierarchical 

model, used as the baseline parameters for the power analysis. 

variable mean q5 q95 

mu_threshold -8.35 -9.50 -7.17 

mu_slope 2.26 2.21 2.31 

mu_lapse -4.93 -5.93 -4.15 

std_threshold_be
tween 

7.92 6.86 8.98 

std_slope_betwe
en 

0.14 0.03 0.23 

std_lapse_betwe
en 

0.48 0.04 1.19 

std_threshold_wi

thin 
7.36 6.70 8.08 

std_slope_within 0.34 0.26 0.41 

std_lapse_within 1.99 1.46 2.61 

  

https://github.com/JesperFischer/Master-thesis/blob/main/Supplementary%20tables/Supplementary%20table2.xlsx
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Supplementary Notes: 

Supplementary note 1: Priors 

In the section for Standard parameter recovery a single fit psychometric function was used to 

demonstrate the standard parameter recovery approach to internal validity of the psychometric 

function. The priors for that model were as follows for the threshold, slope and lapse rate 

respectively. 

𝛼 ∼ 𝑁(0,20) 

𝛽 ∼ 𝑁(0,2) 

𝜆 ∼ 𝑁(−4,2) 

Next the priors for the nested hierarchical model was as follows: 

𝜇𝛼 ∼ 𝑁(0,10) 

𝜎𝛼(𝑤𝑖𝑡ℎ𝑖𝑛) ∼ 𝑁(0,10) 

𝜎𝛼(𝑏𝑒𝑡𝑤𝑒𝑒𝑛) ∼ 𝑁(0,10) 

𝜇𝛽 ∼ 𝑁(0,3) 

𝜎𝛽(𝑤𝑖𝑡ℎ𝑖𝑛) ∼ 𝑁(0,3) 

𝜎𝛽(𝑏𝑒𝑡𝑤𝑒𝑒𝑛) ∼ 𝑁(0,3) 

𝜇𝜆 ∼ 𝑁(−4,2) 

𝜎𝜆(𝑤𝑖𝑡ℎ𝑖𝑛) ∼ 𝑁(0,3) 

𝜎𝜆(𝑏𝑒𝑡𝑤𝑒𝑒𝑛) ∼ 𝑁(0,3) 

𝜌𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ∼ 𝐿𝐾𝐽(2) 

𝜌𝑤𝑖𝑡ℎ𝑖𝑛 ∼ 𝐿𝐾𝐽(2) 

Supplementary note 2: Lapse rate explanation 

As mentioned in the main text, the lapse rate can be quite difficult to estimate if the proportion of 

lapses are low. In the main text it is argued that lapse rate of approximately 1% is difficult to 

estimate as this would on average in the simulation with 100 trials per subject amount to 1 trial 

where the subject would have a lapse. However, from the model’s perspective, these lapses are not 

created equally, which makes it even more difficult to estimate this parameter. This is because of 

the difference between having a lapse when the stimulus value is extreme in either end (high or 

low) or having a lapse when the stimulus value is close to the simulated threshold. A lapse close 
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to the simulated threshold would from the model’s perspective does not interfere with the 

estimation of the parameters as this response could just be due to the stochastic nature of the task 

(i.e. the y-axis of the Psychometric function is the probability of responding 1). Therefore, only 

lapses at the extreme ends would inform the model about the underlying probability of having a 

lapse. 

Supplementary note 3: Pathfinder explanation 

The pathfinder algorithm was used for optimization of the trial-by-trial simulations. The 

implementation was as follows. Firstly a randomly drawn stimulus value in the domain of [-50 ; 

50] was drawn. After the representation of this stimulus value a response is collected based on the 

simulated parameters. The stimulus value together with the responses is then fit to pathfinder 

which uses the priors of the model with this observation to update the parameters. The next 

stimulus is then selected by taking the posterior mean of the threshold. This was done for the first 

5 trials to get reasonable estimates of the parameters of the model. To properly explore the width 

and size of the psychometric function the stimulus values were after the first 5 trials selected based 

on a single draw from the posterior threshold and slope. This meant extracting a draw of the 

threshold and then randomly either adding the draw of the slope or subtracting it. For the full code 

see. The priors for this model are identical to those found in the single subject psychometric 

function (see supplementary note 1) 

Supplementary note 4: Comparison of ADO algorithms 

Comparison between the 3 tested models rested on having each algorithm simulate stimulus values 

based on simulated parameter values. These simulated stimulus values were then used to obtain 

responses of the agents (again using the simulated parameter values). Each set of stimuli and 

responses for each algorithm were then fit using the same Bayesian model (see supplementary note 

3 and 1) and the posterior distributions were computed for each of the three parameters values 

(i.e. threshold 𝛼, slope 𝛽 and lapse rate 𝜆). 

Supplementary note 5: Posterior predictive checks 

Supplementary figures 8 and 10 display the posterior predictive check for the two hierarchical 

models with the three types of responses i.e. binary, reaction time and confidence ratings. In these 

plots the group means of the parameters are depicted giving an indication of the overall structure 

of the behavioral responses of the participants. 

https://github.com/JesperFischer/Master-thesis/blob/main/Analyses/ICC%20analysis/Visualizing%20pathfinder%20scripts.R
https://github.com/JesperFischer/Master-thesis/blob/main/Analyses/ICC%20analysis/Visualizing%20pathfinder%20scripts.R
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Supplementary figures 9 and 11 depicts instead of the group level estimates a particular 

participant at a particular session with overlaid data. Interested readers are referred to the github 

to explore other participants than depicted here. 

Note that for the non-nested hierarchical model the group level estimates are the mean of 

the two sessions whereas this is directly estimated in the nested hierarchical model. 

Supplementary note 6: Power analysis model description 

The full stan code for the model used in the power analysis, see the github. The model assumes 

that all three parameters of the psychometric function is drawn from a multivariate normal 

distribution with group means and between subjects’ variances, furthermore two group differences 

are also drawn from this multivariate normal distribution that calculates the difference between 

slopes and thresholds between sessions. The variance co-variance matrix was decomposed using 

the Cholesky-decomposition and the LKJ-prior was used for the correlation coefficients between 

parameters which was set to 𝜂 = 2 i.e. a quite wide prior on the correlation but with less mass for 

more extreme correlations. 

https://github.com/JesperFischer/Master-thesis/blob/main/manuscript/Supplementary%20material/supplementary%20analyses.Rmd
https://github.com/JesperFischer/Master-thesis/blob/main/Analyses/Power%20analysis/Make%20datasets/Parameterized%20cummulative%20normal.stan

