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Abstract
The human brain has a remarkable ability to learn and update its beliefs about the world. Here,

we investigate how thermosensory learning shapes our subjective experience of temperature and

the misperception of pain in response to harmless thermal stimuli. Through computational

modeling, we demonstrate that the brain uses a probabilistic predictive coding scheme to update

beliefs about temperature changes based on their uncertainty. We find that these expectations

directly modulate the perception of pain in the thermal grill illusion. Quantitative microstructural

brain imaging revealed that the myeloarchitecture and iron content of the somatosensory cortex,

the posterior insula and the amygdala reflect inter-individual variability in computational

parameters related to learning and the degree to which uncertainty modulates illusory pain

perception. Our findings offer a new framework to explain how the brain infers pain from

innocuous thermal inputs. Our model has important implications for understanding the etiology

of thermosensory symptoms in chronic pain conditions.

Keywords: Thermosensation, Thermal Grill Illusion, Probabilistic Learning, Uncertainty, Pain,

Predictive Coding
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Introduction
The ability to adapt to environmental changes and learn in the face of uncertainty is critical for

generating precise and flexible responses to a wide range of stimuli. In the context of

thermosensation and nociception, such adaptability allows us to effectively detect temperature

shifts and avert potential tissue damage, even under conditions of incomplete or ambiguous

information. This capability is not only essential for safeguarding our bodily integrity but also

facilitates our interaction with an uncertain environment. Here, we report findings demonstrating

that thermosensation relies on precision-weighted expectations, and that this extends to complex

phenomena such as illusory pain, exemplified by the Thermal Grill Illusion (TGI).

Current knowledge of the thermosensory and thermo-nociceptive systems predominantly

revolves around peripheral sensory mechanisms that transduce innocuous and noxious thermal

stimuli into neural signals. This includes landmark discoveries like the TRPV1 and TRPM8

receptors [1–3]. While these bottom-up mechanisms have been extensively studied, less attention

has been devoted to how they integrate with top-down expectations to form our subjective

experiences of temperature and pain. Indeed, perception in these domains is not solely the output

of isolated afferent channels but is heavily influenced by prior beliefs and expectations [4–7]. In

this context, the TGI presents a striking case in which the simultaneous presentation of

innocuous warm and cold stimuli can evoke illusory burning sensations [12]. The illusion’s

occurrence, which cannot be solely attributed to the physical characteristics of the stimuli,

suggests that top-down expectations may shape the veridical perception of temperature and pain.

Associative learning plays a fundamental role in the perception of pain and its

modulation by expectation, enabling the development of adaptive behaviors that protect us from

potential harm. Significant progress has been made in understanding these processes through the

computational neuroscience of predictive coding [13–22] and reinforcement learning [18,23].

For instance, it has been shown that participants learn about painful stimuli in a manner that is

consistent with Bayesian principles [23,24], and pain-prediction errors have been mapped to key

brain areas involved in pain-related processing, including the insula and brainstem [15,25,26]. A

key contribution of this work was the recognition that expectation-related modulation of pain,

such as nocebo and placebo effects [27–33], are grounded in the weighting of pain prediction

errors by their uncertainty or inverse precision [13,18,34–36]. To date, it is unknown if these

principles similarly explain innocuous thermosensory perception and illusions of pain. An
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intriguing possibility is that the TGI may stem from thermosensory predictive coding, where

increased uncertainty about upcoming stimulus temperatures give rise to the perception of pain.

In this study, we apply computational methods to reveal how both innocuous

thermosensation and the TGI are shaped by uncertainty in a large cohort of healthy participants.

We further utilized high-resolution quantitative MRI to identify how inter-individual variations

in brain microstructure are associated with computational fingerprints of thermosensory learning.

To this aim, we conducted an experiment in 267 participants who completed a probabilistic

thermosensory learning (PTL) task, in which we strategically embedded simultaneous cold and

warm stimuli to induce the TGI within the learning sequence. This experimental approach offers

a comprehensive analysis of the role of expectations in thermosensory learning and provides a

unique opportunity to test the hypothesis that the uncertainty of thermal expectations plays a

crucial role in the perception of illusory pain. Our results provide a compelling example of how

precision-weighted expectations can lead to the misinterpretation of non-nociceptive stimuli as

painful, offering potential new insights into symptoms of neuropathic and nociplastic pain

conditions [37,38].

Results
To quantify the relationship between learned expectations and thermosensation, we tested a

novel probabilistic thermal learning task (PTL, Fig 1A) in 267 healthy individuals. The PTL

integrates key features of reversal learning tasks in other sensory domains [39–42], in which

participants must dynamically update sensory predictions in response to varying uncertainty. In

each PTL trial, participants heard auditory cues consisting of high or low tones that predicted

whether the forthcoming stimulus would be cold or warm. Critically, these cue-stimulus pairings

shifted unpredictably over time, requiring participants to continuously relearn their associative

mappings. Cue-stimulus associations varied according to blocks of longer, more stable periods in

which reversals were less likely, and shorter, more variable periods in which transitions occurred

more frequently (Fig 1B). Innocuous cool and warm trials were pseudorandomly interspersed

with ambiguous stimuli. These ambiguous stimuli were the simultaneous presentation of the

same objective temperatures as those used in the innocuous cold and warm trials, in an alternated

spatial configuration. This method of stimulus presentation is known to elicit burning pain

sensations referred to as the Thermal Grill Illusion (TGI)[8,10]. On each trial, participants made
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a binary prediction response, indicating whether they expected an upcoming cold or warm

stimulus. In a subset of trials, they subsequently provided visual analog scale (VAS) ratings

reflecting their perceived levels of cold, warm, and burning sensations.

Behavior

Error rates and response times are modulated by thermosensory learning

To evaluate participants’ learning of cue-stimulus associations, we analyzed error rates for

predicted, neutral and unpredicted innocuous thermosensory stimuli (Fig 1C and Supplementary

Table 1A). Predicted and unpredicted stimuli were defined based on the participants’

trial-by-trial predictions (i.e. whether they predicted a cold or a warm stimulus) in blocks where

the nominal probability of a specific cue-stimulus association was 82% and 18%, respectively.

Neutral trials referred to non-predictive blocks where a cue predicted a particular stimulus with a

50% probability. This analysis confirmed that the probability of cue-stimulus association

robustly modulated expectations such that participants’ prediction accuracy was highest for

predicted trials compared to both neutral ( = -1.34, 95% CI = [-1.38; -1.29], p < .0001) andβ

unpredicted trials ( = -2.26, 95% CI = [-2.31; -2.21], p < .0001).β

As further evidence of successful learning, we observed post-prediction error slowing,

indicated by reduced response times on trials following association violations (Fig 1D and

Supplementary Table 1B). Our findings showed that response times were increasingly slowed

following neutral ( = 0.15, 95% CI = [0.13; 0.16], p < .0001) unpredicted ( = 0.31, 95% CI =β β

[0.3; 0.32], p < .0001), and TGI stimuli ( = 0.34, 95% CI = [0.32; 0.35], p < .0001), comparedβ

to predicted stimuli. Together, these results serve as a model-free positive control, confirming

that participants effectively learned and incorporated cue-stimulus relationships into their

thermosensory predictions.
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Fig 1. Thermosensory learning: experimental design and behavioral measures.

A. Trial structure depicting the sequence of events within each trial: auditory cue presentation, prediction of the

forthcoming stimulation quality as either cold or warm, delivery of the thermal stimulation (cold, warm or TGI) and

VAS ratings of cold, warm and burning sensations. All three ratings were completed for a given stimulus. B.

Time-course of cue-stimulus contingencies throughout the experiment, varying across three levels of cue-stimulus

association probabilities set at 82%, 50% and 18%. C. Comparison of error rates for participants’ predictions of the

forthcoming stimulation quality across predicted (P), neutral (N) and unpredicted (UP) innocuous thermosensory

trials. D. Comparison of response times in the trial following predicted (P), neutral (N) and unpredicted (UP)

thermosensory stimuli, as well as TGI stimuli, demonstrating post-prediction error slowing.
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Stimulus-Specific Effects on Thermosensory and Burning Ratings

To evaluate the effectiveness of cold, warm and TGI stimuli, we predicted subjective ratings

using linear mixed effects models incorporating a zero-one inflated beta regression approach

(Supplementary Note). The TGI is characterized by an enhanced perception of heat and the

elicitation of burning sensations when innocuous cold and warm stimuli are combined, which

does not occur when these stimuli are applied individually (Fig 2, Supplementary Tables 2A-C).

In line with heat enhancement, TGI stimuli were rated as significantly less cold than innocuous

cold stimuli ( = -0.39, 95% CI = [-0.41; -0.37], p < .0001), but warmer than innocuous warmβ

alone ( = 0.18, 95% CI = [0.17; 0.2], p < .0001). Further, in line with the elicitation of illusoryβ

pain, the concurrent application of cold and warm stimuli during TGI produced significantly

greater burning sensations than when either cold ( = -0.45, 95% CI = [-0.48; -0.43], p < .0001),β

or warm ( = -0.65, 95% CI = [-0.68; -0.63], p < .0001) were applied individually. Takenβ

together, these findings confirm that innocuous thermosensory stimuli were perceived in a

veridical manner, and the TGI manipulation effectively induced illusory heat and burning

sensations.

Innocuous thermosensation is shaped by expectations

To investigate the impact of learned expectations on innocuous thermosensory experiences, we

analyzed participants’ reported levels of both cold and warm sensations for predicted and

unpredicted stimuli (Fig 2B and Supplementary Table 2D). For each stimulus, participants

provided ratings for factual (e.g., coldness of a cold stimulus) and counterfactual qualities (e.g.,

warmth of a cold stimulus) of their sensations. We found a robust three-way interaction between

the stimulation quality, the participants’ prediction on a trial by trial basis, and the rating type (β

= 0.24, 95% CI = [0.17; 0.32], p < .0001). Considering the factual ratings, predicted cold stimuli

were rated as colder than unpredicted cold stimuli ( = -0.09, 95% CI = [-0.12; -0.07], p <β

.0001), and predicted warm stimuli were rated as warmer than unpredicted warm stimuli ( =β

-0.05, 95% CI = [-0.07; -0.03], p < .0001). Conversely, when assessing the counterfactual

quality, predicted cold stimuli were rated as less warm compared to the unpredicted stimuli ( =β

0.06, 95% CI = [0.01; 0.11], p < .05), while predicted and unpredicted warm stimuli were rated

as similarly cold ( = 0.04, 95% CI = [-0.01; 0.09], p = 0.13). Overall, these results highlight thatβ
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participants’ thermosensory expectations significantly influenced the perceived intensity of

innocuous stimuli.

Response times and error rates reflect perceived TGI quality

We hypothesized that the ambiguous nature of TGI trials would either reinforce or counter

cue-stimulus associations, depending on the participants’ perception of TGI as primarily warm or

cold. For instance, if a participant associates a high tone with a high probability of experiencing a

cold stimulus, and perceives a TGI stimulus as predominantly warm, they might incorrectly infer

a reversal has occurred after hearing a high tone and receiving a TGI stimulus, leading to an

erroneous prediction in the subsequent trial. Conversely, if a participant perceives the TGI as

predominantly cold, the participant’s correct association would be reinforced, leading to

increased likelihood of an accurate prediction in the subsequent trial. To evaluate this hypothesis,

we assessed each participant’s perceived TGI quality by computing the ratio of perceived

coldness to warmth. In general, participants displayed high self-consistency in evaluating their

perception of TGI stimuli as predominantly cold or warm (Fig 2C).

Our model confirmed our hypothesis, demonstrating that error rates were significantly

influenced by the interaction between cue-stimulus association and perceived TGI quality ( =β

-1.73, 95% CI = [-2.04; -1.42], p < .0001, Fig 2 and Supplementary Table 2E). Specifically,

participants were more likely to respond correctly on the subsequent trial when the contingency

and the perceived TGI quality matched (i.e., predicting cold and perceiving TGI as

predominantly cold) ( = 1.02, 95% CI = [0.81; 1.24], p < .0001). Conversely, participants wereβ

more likely to make incorrect responses in the following trial when the contingency and the

perceived TGI quality diverged (e.g., predicting warm and perceiving TGI as predominantly

cold) ( = -0.71, 95% CI = [-0.94; -0.48], p < .0001). Collectively, in a contingency block thatβ

predicted a cold outcome, the odds of making a correct prediction changed substantially

depending on whether the TGI was rated as mostly cold vs. warm - a difference amounting to a

18.36% change in the probability of a correct answer [22.13, 14.08%]. Complementary effects

were observed for response times after TGI stimulation (see Supplementary Results and

Supplementary Table 2F). In summary, these findings reveal that TGI trials play a crucial role in

reinforcing cue-stimulus associations by effectively shaping participants’ thermosensory

predictions based on their perceived quality.
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Fig 2. Thermosensory ratings and TGI perception.

A. VAS burning ratings for cold, warm and TGI stimuli, illustrating a key feature of the TGI as an illusion of pain.

B. Effects of participants’ expectations on VAS ratings for innocuous cold and warm stimuli, showing that

expectations modulated these sensations (mean ± 2 SEM). C. Within-subject consistency of TGI perception as

mostly cold (blue), ambiguous (gray) or mostly warm (red). Thermal ambiguity in this context signified that

participants perceived the TGI trials as equally warm and cold. The y-axis depicts each individual participant, while

the x-axis represents the ratio of perceived coldness to warmth for TGI stimuli (mean ± 2 SEM). D. The relationship

between perceived TGI quality and learning (i.e., error rates in the trials that followed TGI stimulation),

demonstrating that TGI trials reinforced cue-stimulus contingencies based on the perceived TGI quality.
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Computational modeling

A 2-level Hierarchical Gaussian Filter model best explained thermosensory learning

We employed the Hierarchical Gaussian Filter (HGF) [43,44] to analyze learning trajectories

across two hierarchical levels of belief (Fig 3). We estimated mean and uncertainty values for

beliefs about an upcoming stimulus given a cue (i.e., predictions) and beliefs regarding the

strength of cue-outcome associations (i.e., estimations). At the first level ( ), prediction𝑥
1

uncertainty, pertains to uncertainty about immediate outcomes. A low prediction uncertainty

indicates high confidence in predicting the forthcoming stimulus based on the given cue, while

high prediction uncertainty suggests that the participant has not formed a definite prediction of

which outcome is most likely. At the second level ( ), estimation uncertainty, quantifies the𝑥
2

uncertainty surrounding the reliability of cue-outcome relationships. This level of uncertainty

influences the rate at which beliefs about cue-outcome associations are updated. Low estimation

uncertainty signifies a strong belief in the consistency of the cue-outcome association, requiring

considerable contrary evidence for a belief update. In contrast, high estimation uncertainty means

that beliefs regarding the cue-outcome relationship are more malleable and can be adjusted more

readily upon encountering disconfirming evidence. Prediction and estimation uncertainty are

structured hierarchically, meaning that beliefs at one level are dependent on, or informed by, the

beliefs at the upper level (Fig 3).

To assess the best-fitting model, while accounting for parameter complexity, we

compared the 2-level HGF with other well-known well-known reinforcement learning models,

such as Rescorla-Wagner and Sutton K1 using Bayesian model selection [45]. We found that the

2-level HGF outperformed these models. To validate the robustness of our fitted models, we

conducted both parameter and model recovery for the models under consideration (see

Supplementary Figures S1-S5). Overall, model comparison and cross-validation demonstrated

that thermosensory learning is best captured by Bayesian precision-weighted mechanisms that

integrate both prediction and estimation uncertainty.
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Fig 3. Computational modeling of thermosensation and illusory pain.

A. Illustration of the Hierarchical Gaussian Filter, and its constituent perceptual and response models. Within the

perceptual model, two hierarchical levels of trajectories with uncertainties are defined: prediction ( ) and𝑥
1

estimation ( ). The first level takes the form of a Bernoulli distribution, while the second level evolves in time as a𝑥
2

Gaussian random walk with step-size corresponding to the omega ( ) parameter. The response model converts theω

continually updated perceptual belief to a probability of answering through the inverse decision temperature zeta ( )ζ

through a logistic sigmoid transformation. U are observed values representing the cue-stimulus association

mappings, dashed line depicts mediation through model inversion. B. Example of a single participants’ prediction
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and estimation trajectories together with their respective uncertainties. When considering the prediction trajectory,

the thick black line represents the actual contingency probabilities. The trial-by-trial participant’s responses (i.e.,

predictions) are depicted by green points, where the value of one corresponds to the prediction of a cold stimulus

and the value of zero corresponds to a prediction of a warm stimulus. The contingency space is represented by

yellow dots, where zero values represent low tone-cold and high tone-warm associations and one values represent

low tone-warm and high tone-cold associations. Intermediate values represent trials in which the stimulus was

simultaneously cold and warm (i.e., TGI). Prediction uncertainty strongly modulated both C. error rates and D.

response times needed to provide a prediction about the upcoming stimulus, validating the response model.

Prediction uncertainty is presented here as discretized into nine bins.

Modulation of behavior and perception by uncertainty

The impact of uncertainty on behavior and subjective experience was assessed using hierarchical

regression analyses. At the lower level, involving prediction uncertainty, precise beliefs notably

diminished error rates ( = -4.88, 95% CI = [-5.13; -4.63], p < .0001, Fig 3C and Supplementaryβ

Table 3A) and response times ( = 1.76, 95% CI = [1.69; 1.82], p < .0001, Fig 3d andβ

Supplementary Table 3B) when participants predicted the quality of a forthcoming stimulus. This

effect was also reflected in heightened VAS ratings for the thermosensory quality consistent with

participants’ expectations ( = -0.19, 95% CI = [-0.28; -0.09], p < .0001). Specifically, a strongerβ

belief about a forthcoming cold stimulus resulted in heightened cold ratings ( = 0.15, 95% CI =β

[0.1; 0.19], p < .0001), but reduced warm ratings ( = -0.09, 95% CI = [-0.13; -0.05], p < .0001,β

Fig 4A and Supplementary Table 4A). Prediction uncertainty also exerted a notable influence on

the perceived thermosensory quality of the TGI (Fig 4A and Supplementary Table 4B). Here,

precise expectations of cold intensified cold ratings ( = 0.17, 95% CI = [0.11; 0.23], p < .0001)β

and reduced warm ( = -0.17, 95% CI = [-0.22; -0.11], p < .0001), but did not significantlyβ

influence burning ratings ( = -0.04, 95% CI = [-0.12; 0.03], p = 0.26) during the illusion.β

Conversely, precise expectations of warmth heightened both warm and burning sensations,

accentuating both heat enhancement and illusory pain components of TGI perception.

The higher-level estimation uncertainty played a more pronounced role in influencing

burning sensations within TGI trials (Fig 4B and Supplementary Table 4C). Whereas precise

cold expectations at the lower level were linked to reduced burning sensations, weak or unclear

associations between cues and predicted stimuli increased burning ratings compared to both cold

( = -0.07, 95% CI = [-0.08; -0.05], p < .0001) and warm stimuli ( = -0.03, 95% CI = [-0.05;β β

-0.01], p < .0001). This indicated that the illusory pain aspect of the TGI was most intense under
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conditions of ambiguous cue-stimulus mappings, or high estimation uncertainty. In essence,

while lower-level prediction uncertainty predominantly determined whether the TGI was

perceived as more cold or warm, the characteristic burning sensation of the TGI was markedly

influenced by higher-level estimation uncertainty. These findings indicate how increased

uncertainty regarding forthcoming stimulus temperatures can lead to a distorted perception of

innocuous temperatures, manifesting as an aberrant sensation of pain.

Individual differences in thermosensory learning and TGI sensitivity

As participants exhibited large variability in their experience of the TGI (Fig 2A-C), we

investigated how these variations manifested in thermosensory learning. To this end, we

formulated two indices related to TGI responsiveness and susceptibility to uncertainty during

thermosensory learning. To capture individual differences in response to TGI stimuli, we

computed the discrepancy between burning ratings for TGI stimuli and the highest burning rating

for either innocuous cold or warm stimuli. This approach yielded a continuous scale of TGI

responsiveness, spanning from negative values indicative of TGI non-responders to positive

values representing TGI responders. In addition, to quantify susceptibility to uncertainty, we

defined a parameter ( ), which corresponds to the degree to which individual burning ratings inβ

TGI trials were influenced by estimation uncertainty (i.e., an Uncertainty Modulation of TGI

Index or UMTI), thus reflecting individual differences in modulation of TGI intensity by higher

order uncertainty (see Supplementary Note). Our analysis revealed a positive correlation between

the TGI responsiveness index and UMTI (r(265) = 0.6 [0.51 ; 0.67] t = 12.1 p < .0001, Fig 4C),

indicating that individuals with a heightened response to the TGI were also more susceptible to

modulation of their illusion by uncertainty. This finding highlights the crucial link between

individual variability in thermosensory learning and the subjective experience of TGI, and

represents a novel, individually meaningful, metric of TGI responsiveness defined via

computational modeling.

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.587070doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.27.587070


Uncertainty Modulation of Illusory Pain Ehmsen et al.

Fig 4. Effects of prediction and estimation uncertainty on veridical thermosensation and illusory pain.

A. The impact of prediction uncertainty on thermosensory ratings for cold (blue), warm (red) and TGI stimuli

(purple). The x-axis represents the precision of the lower-level belief about the forthcoming stimulus. Prediction

uncertainty values range from high precision prediction that the stimulus would be warm to high precision

predictions that the stimulus would be cold. Intermediate values indicate high prediction uncertainty about the

thermal quality of the forthcoming stimulus. The y-axis indicates the predicted VAS ratings (i.e., marginal means)

based on ZOIB modeling, separately for cold, warm and burning ratings with the shaded area depicting the 50, 80

and 95% confidence interval on the marginal means. B. The impact of estimation uncertainty on TGI perception.

The x-axis depicts the varying degree of estimation uncertainty from low to high. The y-axis indicates the predicted

burning ratings based on ZOIB modeling, separately for cold (blue), warm (red) and TGI stimuli (purple) with the

shaded area depicting the 50, 80 and 95% confidence interval on the marginal means. C. Correlation between the

TGI responsiveness (x-axis) and Uncertainty Modulation of TGI Index (UMTI). The positive correlation

demonstrated that individuals with heightened responsiveness to TGI are also more susceptible to modulation of

their illusion by uncertainty.
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Computational fingerprints of thermosensory learning

We examined the neurobiological underpinnings of inter-individual variability in computational

parameters, by relating (capturing variability in the decision-making process, also known asζ

decision temperature), (reflecting the speed of adaptation to changing conditions or learning)ω

and UMTI (the uncertainty modulation of TGI index) parameters to brain microstructure. To this

aim, we performed whole-brain voxel-based quantification analyses of Magnetization Transfer

(MT), Longitudinal Relaxation Rate (R1) and effective transverse relaxation rate (R2*) weighted

maps obtained from 0.8 mm Multi-Parameter Mapping (Table 1 and Fig 5). MT and R1 serve as

indicators of cortical myeloarchitecture, aiding in the identification of myelination levels in gray

matter. R2* is influenced by factors such as iron concentration [46,47]. A benefit of this

approach is that the VBQ technique yields quantitative measures of local brain microstructure

which are inherently meaningful and comparable across imaging sites or studies, unlike classical

volumetric techniques which derive arbitrary signal units [47].

We identified significant correlations between computational parameters and individual

variation in the microstructure of brain regions previously related to pain and thermosensation

(Table 1). Individual variability of decision-making processes, denoted by the parameter ζ,

showed positive correlations with cortical myeloarchitecture in the left postcentral gyrus (MT

map) and the right posterior insula (R1 map), as well as the iron concentration of the subnucleus

reticularis dorsalis within the brainstem, among other regions such as the right cerebellum and

the left superior frontal gyrus (R2* map). Additionally, the myeloarchitecture of the right

posterior gyrus and the right precentral gyrus (R1 map) exhibited negative correlations with ω,

highlighting the role of somatosensory and motor cortices in thermosensory associative learning.

Finally, UMTI showed a negative correlation with the myeloarchitecture of the right inferior

frontal gyrus (MT map) and with the iron concentration of the right basolateral amygdala (R2*

map). This suggests that the influence of uncertainty on the perception of illusory pain is linked

to the microstructural characteristics of regions involved in salience detection, as well as threat

and fear learning [48]. This aligns with the view that inferior frontal gyrus and amygdala regions

are instrumental in erroneously interpreting innocuous stimuli as painful, influenced by the

brain’s estimation of uncertainty. These results shed light on the cortical myeloarchitecture

fingerprints associated with ζ, ω, and UMTI, enhancing our understanding of the neurobiological

underpinnings of decision-making, learning, and the modulation of uncertainty within the
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context of pain illusions. It also identifies structural features and regions that may potentially

serve as biomarkers for these cognitive processes in individuals with chronic pain conditions.

Table 1: Microstructural brain correlates of computational parameters.

Region k p(FWE-corr) Z value x y z MAP Contrast

L Postcentral
Gyrus 210 0.005 3.84 -27 -39 63 MT ζ

R Inferior Frontal
Gyrus 606 <.001 -4.83 49 18 29 MT UMTI

R Postcentral
Gyrus 266 0.001 -4.20 41 -29 46 R1 ω

R Precentral
Gyrus 552 <.001 -5.28 43 3 40 R1 ω

R Posterior Insula 226 0.003 3.77 38 5 -16 R1 ζ

Subnucleus
reticularis dorsalis 202 0.02 3.70 1 -45 -58 R2* ζ

R Cerebellum
Exterior 396 <.001 4.25 4 -66 -40 R2* ζ

L Superior Frontal
Gyrus Medial
Segment

362 <.001 4.23 -5 38 30 R2* ζ

R Amygdala 303 0.001 -3.99 22 -10 -24 R2* UMTI

L Amygdala 171 0.055 -3.94 -26 -10 -26 R2* UMTI
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Fig 5. Microstructural brain correlates of computational parameters.

Analysis of Multi-Parameter Maps indexing local gray matter myeloarchitecture (MT and R1) and iron content

(R2*). Heat maps and color bars indicate voxelwise Z-statistics. For visualization purposes, thresholded Z-maps are

plotted on the average normalized parametric map across the entire sample. Maps are family wise error (FWE)

cluster-corrected for multiple comparisons, pFWE < 0.05. Columns represent MT, R1 and R2* maps respectively

from left to right. Each cell denotes a specific map with names representing the anatomical identifier with the

particular contrast delineated within parentheses.
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Discussion
We demonstrate that expectations shape both innocuous thermosensation and the Thermal Grill

Illusion (TGI), providing a computational perspective on how the brain’s interpretation of

innocuous thermal stimuli can paradoxically lead to pain. Through computational modeling, we

have defined a mechanistic framework where hierarchical levels of predictions govern both the

perceived quality of thermosensory inputs and the intensity of illusory pain. At the lower-level,

the immediate predictions about an upcoming sensory stimulus modulate the perceived

thermosensory quality. This modulation aligns closely with the predicted outcome, with the

degree of influence scaled by the prediction’s uncertainty. In other words, more uncertain

predictions result in less pronounced effects on temperature perception. At the higher level, the

model encapsulates beliefs about cue-outcome associations, where greater uncertainty in these

associations is found to amplify the experience of illusory pain, as evidenced by the increased

burning sensations during the Thermal Grill Illusion (TGI).

We further define a computationally-based metric of TGI responsivity related to

estimation uncertainty, referred to as Uncertainty Modulation of TGI Index (UMTI). We find that

UMTI is positively correlated with TGI responsiveness, suggesting that illusory pain reflects

increased susceptibility to thermosensory estimation uncertainty. This finding suggests that those

who experience more pronounced illusory pain in the TGI tend to have a higher degree of

uncertainty in discerning thermal sensations. Essentially, when their ability to anticipate and

interpret thermal inputs is more uncertain, they are more prone to perceive these non-painful

stimuli as painful.

We linked three distinct computational parameters of thermosensory learning and TGI

perception to brain microstructure. Zeta (ζ), a parameter related to decision temperature,

reflecting individual variability in the decision-making process was associated with gray matter

myelination of primary somatosensory cortex and posterior insula, as well as iron content in the

subnucleus reticularis dorsalis - a region in the medulla known for its involvement in the

descending modulatory system [49,50]. Omega (ω), as a parameter reflecting the influence of

uncertainty on learning, was also linked to the myelination of the primary somatosensory cortex.

Finally, we identified novel brain markers inscribed in the iron concentration of basolateral

amygdala and cortical myelination of the inferior frontal gyrus related to uncertainty modulation

of TGI perception (UMTI). All these areas are notably involved in either pain processing [30,31]
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or threat detection [48], suggesting direct relationships between microstructure features in these

regions and the computational mechanisms underlying illusory pain perception. Future research

will focus on modeling functional connectivity within a brain network that includes these

regions, using task-based fMRI imaging.

In summary, this study not only refines our understanding of human thermosensation

from a Bayesian perspective but also identifies how uncertainty can lead to the misinterpretation

of harmless stimuli as painful, transforming objectively innocuous stimuli into a subjective

experience of pain. Our findings align with prior evidence supporting Bayesian models in pain

perception and learning [23,24] and extend such framework to the domains of thermosensation

and thermo-nociceptive illusions.

By showing that innocuous thermosensation and pain perception can be modulated by

learned expectations, our study provides a computational framework that may be used to identify

computational profiles in chronic pain conditions, where pain perception is decoupled from

nociceptive inputs. For instance, in neuropathic pain conditions, often marked by nerve damage

and resultant sensory disruption, individuals might experience heightened pain due to a

misinterpretation of uncertain thermosensory inputs. Alternatively, chronic pain might be a result

of the brain’s tendency to maintain its expectation of pain, which is not updated by sensory

inputs due to the reduced sensory drive. These scenarios highlight how uncertainty and

expectations can shape the experience of pain, as a result of altered bottom-up signaling. Overall,

our study offers a computational framework to investigate how individual differences in learning

could underlie experiences of chronic pain.
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Online methods

Participants

A total of 273 participants completed a behavioral session of the probabilistic thermosensory

learning task (PTL). We excluded six participants from the analyses due to missing responses in

more than 10% of choices (i.e., predictions) or VAS ratings. The sample included in the

behavioral analyses corresponded to 267 (182 female) participants, between the age of 18 and 52

years (mean = 24.5, sd = 4.4). 213 of these participants completed an MRI session, on a separate

day, prior to the completion of the PTL task. Both MRI and behavioral sessions were completed

within a three-week interval by the same individuals. This research, a subsection of a larger

neuroimaging study with a total of 502 participants, involved various imaging, physiological,

and cognitive assessments, focusing here on thermosensory learning and quantitative MRI data.

Participants provided informed consent prior to the beginning of the study. The project received

ethical approval from the Midtjylland Ethics Committee, and was conducted in accordance with

the Declaration of Helsinki.

Stimuli

Thermal stimuli were administered via a Thermal Cutaneous Stimulator (TCS) on the

non-dominant forearm, allowing for quick and accurate responses with the dominant hand. The

total stimulation surface covered 10 , comprising five distinct stimulation zones measuring 7𝑐𝑚2

x 28 mm each. Cold and warm temperatures were individually calibrated, using a procedure that

combined the method of limits and method of levels approaches. Innocuous warm stimuli

involved three adjacent zones at an average temperature of 39.1 2.8 °C while innocuous cold±

stimuli consisted of two adjacent zones at an average temperature of 20 6.5 °C. The inactive±

zones remained at the baseline temperature of 32°C. TGI stimuli used the same temperatures as

the innocuous conditions, with three warm and two cold stimuli presented in an alternating

spatial pattern. Auditory tones, which served as cues for the forthcoming thermal stimulation,

were either a lower tone of 400 Hz or a higher tone of 1600 Hz.

Experimental procedure

In the PTL, participants completed 306 trials. Each trial began with a fixation point displayed for

a random interval between one to two seconds. Following this, an auditory tone (either 400 or
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1600 Hz) was presented, leading to a prompt for the participant to predict the upcoming

thermosensory stimulus. This prediction was a binary choice - ‘cold’ or ‘warm’ - made using the

left and right arrow keys, with a response time limit of three seconds. The stimulus, lasting 10

seconds, varied between cold (43% of trials), warm (43% of trials), or a combination of both in

an alternating pattern to induce Thermal Grill Illusion (TGI), present in 14% of trials. In around

47% of trials, we collected Visual Analog Scale (VAS) ratings from participants to measure their

perception of cold, warm, and burning sensations. Each sensation was rated on a separate scale

ranging from 0 (no sensation) to 100 (maximum sensation), with these ratings required for

approximately 60% of cold and warm trials and all TGI trials. Participants had up to five seconds

to provide each VAS rating.

The likelihood of cue-stimulus associations was governed by two predetermined

sequences, which were counterbalanced across participants. These sequences were designed to

create blocks of stimuli where a specific cue had an 82% chance of indicating a particular

outcome. However, these cues were subject to unpredictable reversals - at certain points, a cue

that previously had an 82% likelihood of predicting one outcome would switch to having only an

18% likelihood of predicting that same outcome. Interspersed between these reversals were

blocks of trials in which the association between a cue and a stimulus was at chance level.

Statistical modeling

The modeling of error rates, response times and VAS ratings was conducted using generalized

linear mixed effects models using the GAMLSS package [51] in R. Error rates were modeled

using a binomial distribution with the logit link function, while response times were modeled

using a gamma distribution with a logarithmic link function, VAS-ratings were modeled using

the zero-one-inflated beta distribution with the logit link function for all parameters (see

Supplementary Note). For all mixed effects models random intercepts were incorporated for each

subject, incorporating random slopes where convergence permitted.

Computational modeling

We compared three computational learning models: 2-level HGF, Rescorla Wagner and Sutton

K1. To ensure the robustness of all models, we demonstrated acceptable parameter recovery,

across a wide range of subject-specific learning parameters, as well as effective model recovery.

Results from these analyses, further elaborated in Fig S4, ensured that the parameters derived
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from the models were interpretable and sensible, and facilitated the specification of reasonable

parameter ranges for weakly informative priors for all models. For selecting the model that most

accurately represented the data from our learning task, we employed a random effects model

comparison using the VBA-toolbox [45]. This analysis indicated that the 2-level HGF was the

most appropriate model to describe our data. 

The 2-level HGF utilizes variational Bayesian approximation to derive update equations,

enabling the estimation of how beliefs across different hierarchical levels evolve over trials

[43,44]. The model is structured in two sub-parts known as response and perceptual models (Fig

3). The response model includes observed values, such as the inferred cue-outcome association

(U), the participant’s prediction responses (Resp), and the decision temperature parameter zeta (ζ

). The perceptual model is organized across two distinct hierarchical levels. At the first level (𝑥
1

), the model captures participants’ immediate predictions about upcoming stimuli. These

lower-level predictions follow a Bernouli distribution where the more extreme values around

zero and one signify low prediction uncertainty, while intermediate values (0.5) indicate high

uncertainty. The second level ( ) encapsulated predictions about the stability of cue-outcome𝑥
2

associations. These higher-level beliefs evolve over time as a Gaussian random walk, with a step

size determined by the parameter omega ( ).ω

The transition from the second-level to the first-level HGF is governed by a sigmoid

transformation, converting the continuous Gaussian-distributed beliefs into discrete

Bernoulli-distributed probabilities about immediate outcomes. The sigmoid transformation is

formulated as:

𝑆 𝑥( ) = 1

1+𝑒−𝑥

Simultaneously, the second-level HGF is updated based on precision-weighted prediction errors

computed at the first-level. This update mechanism allows the model to account for confidence

in the first-level predictions, adjusting the second-level beliefs accordingly. In cases of higher

precision, when the uncertainty weight on prediction errors is low, the model is more likely to

maintain its current belief structure. This belief updating is formulated as:
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Where subscripts represent the level of the HGF, is the mean of the level, is the precision ofµ π

the level and is the contingency input. In our computational analysis, this inverse precision is𝑢

referred to as estimation uncertainty, while the first level uncertainty is labeled prediction

uncertainty.

Quantitative MRI

Quantitative MRI (qMRI) data were acquired using a 3T MRI scanner (Siemens Prisma),

standard 32-channel RF head coil and a radiofrequency body coil. We obtained whole-brain

images at isotropic 0.8mm resolution using a Multi-Parameter Mapping (MPM) quantitative

imaging protocol [52]. The imaging sequences included three spoiled multi-echo 3D fast low

angle shot (FLASH) acquisitions and three additional calibration sequences to correct for RF

transmit field inhomogeneities (i.e., B1 mapping). Specifically, the FLASH sequences consisted

of magnetization transfer (MT), proton density (PD) and T1 weighting acquisitions. The flip

angle was 6° for MT and PD, while 21° for T1-weighted images. MT-weighting used a Gaussian

RF pulse 2 kHz off resonance with 4ms duration and a nominal flip rate of 220°. The field of

view was 256mm head-foot, 224mm anterior-posterior, and 179mm right-left. We acquired

gradient echoes with alternating readout gradient polarity using equidistant echo times ranging

from 2.34 to 13.8ms (MT) or 18.4ms (PD and T1), using a readout bandwidth of 490 Hz/pixel.

For the MT-weighted acquisition, only 6 echoes were collected to achieve a repetition time (TR)

of 25ms for all FLASH volumes. For accelerated data acquisition, we performed partially

parallel imaging using the GRAPPA algorithm, with an acceleration factor of 2 in each phase

encoded direction and 40 integrated reference lines. All acquisitions had a slab rotation of 30°.

The B1 mapping acquisition comprised 11 measurements with the nominal flip rate ranging from

115° to 65° in 5° steps. The total scanning time for the qMRI acquisitions was approximately 26

minutes.

Map creation

We obtained quantitative MT, PD, R1 and R2* maps using the hMRI toolbox v. 0.5.0 (January

2023) [53] and SMP12 (version 12.r7771, Wellcome Trust Centre for Neuroimaging,

http://www.fil.ion.ucl.ac.uk/spm/). Except for enabling the correction for imperfect spoiling [54],

the hMRI toolbox was configured using the standard settings. Prior to the estimation of these

maps, all images were aligned to the MNI standard space. This processing produced four maps,
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each reflecting different attributes of brain tissue microstructure. The MT map is sensitive to

myelination and myeloarchitecture, the PD map is indicative of tissue water content, the R1 map

primarily reflects myelination, but also iron and water content, while the R2* map is sensitive to

tissue iron concentration. We analyzed three of these maps (MT, R1 and R2*) independently.

We used the unified segmentation approach [55] to segment MT saturation maps into

probability maps of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). For

this segmentation, we employed tissue probability maps based on multi-parameter data [56],

without bias field correction as MT maps do not show significant bias field modulation.

Subsequently, GM and WM probability maps were utilized for inter-subject registration using the

nonlinear diffeomorphic algorithm DARTEL [57]. This step enabled the normalization of the

derived quantitative maps to MNI space at an isotropic 1 mm resolution. This normalization used

the DARTEL template created during registration and participant-specific deformation fields.

The nonlinear registration of the quantitative maps was based on the MT maps, chosen

for their high contrast in subcortical structures and a WM-GM contrast in the cortex comparable

to that of T1-weighted images [58]. Finally, tissue-weighted smoothing was applied using a 4

mm full width at half maximum (FWHM) kernel [59], to preserve quantitative values. The

resulting smoothed, modulated and normalized GM images were used for statistical analyses. For

visualization purposes, we generated average MT, R1 and R2* maps in standard space based on

data from 442 individuals, who participated in the Visceral Mind Project. For analysis, we

utilized a gray-matter mask that was generated by averaging the smoothed, modulated GM

segments, and applying a threshold of p(gray matter) > 0.2.

MPM Quality Control

We implemented a comprehensive set of quality-control (QC) protocols including manual and

automated procedures. These included manual scoring of raw image quality at the time of

acquisition, automated processing via the Mriqc pipeline [60], as well as the application of a

specially developed semi-automatic hMRI-vQC pipeline designed for quantitative neuroimaging.

We additionally calculated the index of motion degradation using QUQUI [61]. The automated

procedures yielded a variety of quantitative QC metrics including coregistration parameters,

standard deviation in the white matter of the R2* maps, SNR and CNR values; these were

inspected via boxplots to identify extreme subjects. Following the application of MRIqc, a team

of two authors (NN and CS) inspected all raw images and post-processed maps including those
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flagged by the automated procedure. Images were graded on a scale from 0-3 (unusable to no

issues), and any disagreements between the raters were discussed and resolved alongside a third

author (MA). In the Visceral Mind Project, 60 out of 502 individuals failed to pass these QC

protocols, while in the subsample of the current study no participant was excluded from the

voxel-based quantification analyses due to data quality.

Voxel Based Quantification Analysis

We analyzed whole-brain associations between MT at each voxel and thermosensory learning

using a multiple linear regression approach known as voxel-based quantification (VBQ). Our key

analysis comprised positive and negative t-tests over the computational parameters. We included

age, gender, and total intracranial volume as nuisance covariates in the regression model,

following recommended procedures for computational neuroanatomy [62]. The analysis was

adjusted for multiple comparisons using a cluster-based approach with non-stationarity

correction, using a family wise error (FWE) cluster threshold of p < 0.025 (Bonferroni corrected

for two one-tailed tests), based upon a p < 0.001 uncorrected inclusion threshold [62], within the

gray matter mask. All statistical analyses were conducted in SPM12, while anatomical labels

were determined using the JuBrain Anatomy Toolbox v. 3.0 [63]. The full suite of statistical

maps generated from this study is available at a Neurovault repository.
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Data availability

Behavioral and modeling data are available at OSF. Brain imaging data are available at

Neurovault.

Code availability

All code is available at Github.

Acknowledgements

This work was supported by the European Research Council under the grants

ERC-2020-StG-948838 (FF, JFE, CEK, AGM, CSD) and ERC-2020-StG-948788 (MGA, ASC,

MV). We also acknowledge funding from the Lundbeck Foundation under the grants

R272-2017-4345 (MGA, LB, MB, NN). CS is supported by a Neuroscience Academy Denmark

(NAD) fellowship. Additionally, CM is supported by Wellcome Mental Health Award

226776/Z/22/Z, Independent Research Fund Denmark (DFF) Research Project 3166-00158B,

Carlsberg Foundation Young Researcher Fellowship CF21-0439, and Aarhus University

Research Foundation Starting Grant AUFF-E-2019-7-10. We thank Tobias Hauser for comments

on the study design and draft.

Authors contributions

Author contributions listed alphabetically according to CRediT taxonomy: Conceptualization:

MGA, FF. Data curation: MGA, DEC, JFE, FF, NN, CS. Formal analysis: MGA, DEC, JFE, FF,

NN, CS. Funding acquisition: MGA, FF. Investigation: MGA, MB, DEC, JFE, FF, CEK, NN,

MV Methodology: MGA, DEC, JFE, FF, CM. Project administration: MGA, FF, NN, MV.

Resources: MGA, LB, MB, ASC, CSD, JFE, FF, CEK, AGM, CM, NN, MV. Software: MGA,

DEC, JFE, FF, CM, NN. Supervision: MGA, FF. Visualization: MGA, JFE, FF. Writing –

original draft: MGA, JFE, FF. Writing – review & editing: MGA, ASC, JFE, FF, CM, AGM,

NN.

26

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.587070doi: bioRxiv preprint 

https://osf.io/pw956/
https://neurovault.org/collections/16422/
https://github.com/Body-Pain-Perception-Lab/Pain-Thermal-Learning.git
https://doi.org/10.1101/2024.03.27.587070


Uncertainty Modulation of Illusory Pain Ehmsen et al.

References

1. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The
capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature. 1997;389:
816–824. doi:10.1038/39807

2. McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a
general role for TRP channels in thermosensation. Nature. 2002;416: 52–58.
doi:10.1038/nature719

3. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, et al. A
TRP channel that senses cold stimuli and menthol. Cell. 2002;108: 705–715.
doi:10.1016/s0092-8674(02)00652-9

4. Atlas LY, Bolger N, Lindquist MA, Wager TD. Brain Mediators of Predictive Cue Effects
on Perceived Pain. Journal of Neuroscience. 2010;30: 12964–12977.
doi:10.1523/JNEUROSCI.0057-10.2010

5. Fields HL. How expectations influence pain. PAIN. 2018;159 Suppl 1: S3–S10.
doi:10.1097/j.pain.0000000000001272

6. Jepma M, Koban L, Doorn J van, Jones M, Wager TD. Behavioural and neural evidence
for self-reinforcing expectancy effects on pain. Nature Human Behaviour. 2018;2: 838–855.
doi:10.1038/s41562-018-0455-8

7. Nickel MM, Tiemann L, Hohn VD, May ES, Gil Ávila C, Eippert F, et al.
Temporal–spectral signaling of sensory information and expectations in the cerebral processing
of pain. Proceedings of the National Academy of Sciences. 2022;119: e2116616119.
doi:10.1073/pnas.2116616119

8. Craig AD, Bushnell MC. The thermal grill illusion: Unmasking the burn of cold pain.
Science. 1994;265: 252–255. doi:10.1126/science.8023144

9. Craig AD, Reiman EM, Evans A, Bushnell MC. Functional imaging of an illusion of
pain. Nature. 1996;384: 258–260. doi:10.1038/384258a0

10. Fardo F, Beck B, Allen M, Finnerup NB. Beyond Labeled Lines: A Population Coding
Account of the Thermal Grill Illusion. Neuroscience and Biobehavioral Reviews. 2020;108:
472–479. doi:10.1016/j.neubiorev.2019.11.017

11. Mitchell AG, Ehmsen JF, Christensen DE, Stuckert A, Haggard P, Fardo F. Disentangling
the spinal mechanisms of illusory heat and burning sensations in the Thermal Grill Illusion.
bioRxiv; 2023. doi:10.1101/2023.08.24.554485

12. Fardo F, Finnerup NB, Haggard P. Organization of the Thermal Grill Illusion by Spinal
Segments. Annals of Neurology. 2018;84: 463–472. doi:10.1002/ana.25307

27

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.587070doi: bioRxiv preprint 

https://doi.org/10.1038/39807
https://doi.org/10.1038/nature719
https://doi.org/10.1016/s0092-8674(02)00652-9
https://doi.org/10.1523/JNEUROSCI.0057-10.2010
https://doi.org/10.1097/j.pain.0000000000001272
https://doi.org/10.1038/s41562-018-0455-8
https://doi.org/10.1073/pnas.2116616119
https://doi.org/10.1126/science.8023144
https://doi.org/10.1038/384258a0
https://doi.org/10.1016/j.neubiorev.2019.11.017
https://doi.org/10.1101/2023.08.24.554485
https://doi.org/10.1002/ana.25307
https://doi.org/10.1101/2024.03.27.587070


Uncertainty Modulation of Illusory Pain Ehmsen et al.

13. Büchel C, Geuter S, Sprenger C, Eippert F. Placebo analgesia: A predictive coding
perspective. Neuron. 2014;81: 1223–1239. doi:10.1016/j.neuron.2014.02.042

14. Fardo F, Auksztulewicz R, Allen M, Dietz MJ, Roepstorff A, Friston KJ. Expectation
violation and attention to pain jointly modulate neural gain in somatosensory cortex.
NeuroImage. 2017;153: 109–121. doi:10.1016/j.neuroimage.2017.03.041

15. Geuter S, Boll S, Eippert F, Büchel C. Functional dissociation of stimulus intensity
encoding and predictive coding of pain in the insula. Johansen-Berg H, editor. eLife. 2017;6:
e24770. doi:10.7554/eLife.24770

16. Tabor A, Thacker MA, Moseley GL, Körding KP. Pain: A Statistical Account. PLOS
Computational Biology. 2017;13: e1005142. doi:10.1371/journal.pcbi.1005142

17. Hoskin R, Berzuini C, Acosta-Kane D, El-Deredy W, Guo H, Talmi D. Sensitivity to pain
expectations: A Bayesian model of individual differences. Cognition. 2019;182: 127–139.
doi:10.1016/j.cognition.2018.08.022

18. Seymour B, Mancini F. Hierarchical models of pain: Inference, information-seeking, and
adaptive control. NeuroImage. 2020;222: 117212. doi:10.1016/j.neuroimage.2020.117212

19. Song Y, Yao M, Kemprecos H, Byrne A, Xiao Z, Zhang Q, et al. Predictive coding
models for pain perception. Journal of Computational Neuroscience. 2021;49: 107–127.
doi:10.1007/s10827-021-00780-x

20. Eckert A-L, Pabst K, Endres DM. A Bayesian model for chronic pain. Frontiers in Pain
Research. 2022;3. Available: https://www.frontiersin.org/articles/10.3389/fpain.2022.966034

21. Kiverstein J, Kirchhoff MD, Thacker M. An Embodied Predictive Processing Theory of
Pain Experience. Review of Philosophy and Psychology. 2022;13: 973–998.
doi:10.1007/s13164-022-00616-2

22. Chen ZS, Wang J. Pain, from perception to action: A computational perspective.
iScience. 2023;26: 105707. doi:10.1016/j.isci.2022.105707

23. Mancini F, Zhang S, Seymour B. Computational and neural mechanisms of statistical
pain learning. Nature Communications. 2022;13: 6613. doi:10.1038/s41467-022-34283-9

24. Mulders D, Seymour B, Mouraux A, Mancini F. Confidence of probabilistic predictions
modulates the cortical response to pain. Proceedings of the National Academy of Sciences.
2023;120: e2212252120. doi:10.1073/pnas.2212252120

25. Roy M, Shohamy D, Daw N, Jepma M, Wimmer GE, Wager TD. Representation of
aversive prediction errors in the human periaqueductal gray. Nature Neuroscience. 2014;17:
1607–1612. doi:10.1038/nn.3832

28

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.587070doi: bioRxiv preprint 

https://doi.org/10.1016/j.neuron.2014.02.042
https://doi.org/10.1016/j.neuroimage.2017.03.041
https://doi.org/10.7554/eLife.24770
https://doi.org/10.1371/journal.pcbi.1005142
https://doi.org/10.1016/j.cognition.2018.08.022
https://doi.org/10.1016/j.neuroimage.2020.117212
https://doi.org/10.1007/s10827-021-00780-x
https://www.frontiersin.org/articles/10.3389/fpain.2022.966034
https://doi.org/10.1007/s13164-022-00616-2
https://doi.org/10.1016/j.isci.2022.105707
https://doi.org/10.1038/s41467-022-34283-9
https://doi.org/10.1073/pnas.2212252120
https://doi.org/10.1038/nn.3832
https://doi.org/10.1101/2024.03.27.587070


Uncertainty Modulation of Illusory Pain Ehmsen et al.

26. Fazeli S, Büchel C. Pain-Related Expectation and Prediction Error Signals in the Anterior
Insula Are Not Related to Aversiveness. The Journal of Neuroscience: The Official Journal of the
Society for Neuroscience. 2018;38: 6461–6474. doi:10.1523/JNEUROSCI.0671-18.2018

27. Levine JD, Gordon NC, Fields HL. The mechanism of placebo analgesia. Lancet. 1978;2:
654–657. doi:10.1016/s0140-6736(78)92762-9

28. Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, et al.
Placebo-induced changes in FMRI in the anticipation and experience of pain. Science. 2004;303:
1162–1167. doi:10.1126/science.1093065

29. Price DD, Finniss DG, Benedetti F. A comprehensive review of the placebo effect:
Recent advances and current thought. Annual Review of Psychology. 2008;59: 565–590.
doi:10.1146/annurev.psych.59.113006.095941

30. Eippert F, Bingel U, Schoell ED, Yacubian J, Klinger R, Lorenz J, et al. Activation of the
opioidergic descending pain control system underlies placebo analgesia. Neuron. 2009;63:
533–543. doi:10.1016/j.neuron.2009.07.014

31. Eippert F, Finsterbusch J, Bingel U, Büchel C. Direct evidence for spinal cord
involvement in placebo analgesia. Science. 2009;326: 404. doi:10.1126/science.1180142

32. Benedetti F. Placebo effects: From the neurobiological paradigm to translational
implications. Neuron. 2014;84: 623–637. doi:10.1016/j.neuron.2014.10.023

33. Wager TD, Atlas LY. The neuroscience of placebo effects: Connecting context, learning
and health. Nature Reviews Neuroscience. 2015;16: 403–418. doi:10.1038/nrn3976

34. Anchisi D, Zanon M. A Bayesian perspective on sensory and cognitive integration in
pain perception and placebo analgesia. PloS One. 2015;10: e0117270.
doi:10.1371/journal.pone.0117270

35. Tabor A, Burr C. Bayesian Learning Models of Pain: A Call to Action. Current Opinion
in Behavioral Sciences. 2019;26: 54–61. doi:10.1016/j.cobeha.2018.10.006

36. Ongaro G, Kaptchuk TJ. Symptom perception, placebo effects, and the Bayesian brain.
PAIN. 2019;160: 1–4. doi:10.1097/j.pain.0000000000001367

37. Craig AD. Can the basis for central neuropathic pain be identified by using a thermal
grill? PAIN. 2008;135: 215–216. doi:10.1016/j.pain.2008.01.022

38. Adam F, Jouët P, Sabaté J-M, Perrot S, Franchisseur C, Attal N, et al. Thermal grill
illusion of pain in patients with chronic pain: A clinical marker of central sensitization? PAIN.
2023;164: 638–644. doi:10.1097/j.pain.0000000000002749

39. Ouden HEM den, Daunizeau J, Roiser J, Friston KJ, Stephan KE. Striatal prediction error
modulates cortical coupling. Journal of Neuroscience. 2010;30: 3210–3219.
doi:10.1523/JNEUROSCI.4458-09.2010

29

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.587070doi: bioRxiv preprint 

https://doi.org/10.1523/JNEUROSCI.0671-18.2018
https://doi.org/10.1016/s0140-6736(78)92762-9
https://doi.org/10.1126/science.1093065
https://doi.org/10.1146/annurev.psych.59.113006.095941
https://doi.org/10.1016/j.neuron.2009.07.014
https://doi.org/10.1126/science.1180142
https://doi.org/10.1016/j.neuron.2014.10.023
https://doi.org/10.1038/nrn3976
https://doi.org/10.1371/journal.pone.0117270
https://doi.org/10.1016/j.cobeha.2018.10.006
https://doi.org/10.1097/j.pain.0000000000001367
https://doi.org/10.1016/j.pain.2008.01.022
https://doi.org/10.1097/j.pain.0000000000002749
https://doi.org/10.1523/JNEUROSCI.4458-09.2010
https://doi.org/10.1101/2024.03.27.587070


Uncertainty Modulation of Illusory Pain Ehmsen et al.

40. Iglesias S, Mathys C, Brodersen KH, Kasper L, Piccirelli M, Ouden HEM den, et al.
Hierarchical prediction errors in midbrain and basal forebrain during sensory learning. Neuron.
2013;80: 519–530. doi:10.1016/j.neuron.2013.09.009

41. Berker AO de, Rutledge RB, Mathys C, Marshall L, Cross GF, Dolan RJ, et al.
Computations of uncertainty mediate acute stress responses in humans. Nature Communications.
2016;7: 10996. doi:10.1038/ncomms10996

42. Lawson RP, Mathys C, Rees G. Adults with autism overestimate the volatility of the
sensory environment. Nature Neuroscience. 2017;20: 1293–1299. doi:10.1038/nn.4615

43. Mathys C, Daunizeau J, Friston K, Stephan K. A Bayesian Foundation for Individual
Learning Under Uncertainty. Frontiers in Human Neuroscience. 2011;5. Available:
https://www.frontiersin.org/articles/10.3389/fnhum.2011.00039

44. Mathys CD, Lomakina EI, Daunizeau J, Iglesias S, Brodersen KH, Friston KJ, et al.
Uncertainty in perception and the Hierarchical Gaussian Filter. Frontiers in Human
Neuroscience. 2014;8. Available:
https://www.frontiersin.org/articles/10.3389/fnhum.2014.00825

45. Daunizeau J, Adam V, Rigoux L. VBA: A Probabilistic Treatment of Nonlinear Models
for Neurobiological and Behavioural Data. PLOS Computational Biology. 2014;10: e1003441.
doi:10.1371/journal.pcbi.1003441

46. Samson RS, Ciccarelli O, Kachramanoglou C, Brightman L, Lutti A, Thomas DL, et al.
Tissue- and column-specific measurements from multi-parameter mapping of the human cervical
spinal cord at 3 T. NMR in Biomedicine. 2013;26: 1823–1830. doi:10.1002/nbm.3022

47. Weiskopf N, Mohammadi S, Lutti A, Callaghan MF. Advances in MRI-based
computational neuroanatomy: From morphometry to in-vivo histology. Current Opinion in
Neurology. 2015;28: 313. doi:10.1097/WCO.0000000000000222

48. Fox AS, Oler JA, Tromp DPM, Fudge JL, Kalin NH. Extending the amygdala in theories
of threat processing. Trends in neurosciences. 2015;38: 319–329. doi:10.1016/j.tins.2015.03.002

49. Mills EP, Di Pietro F, Alshelh Z, Peck CC, Murray GM, Vickers ER, et al. Brainstem
Pain-Control Circuitry Connectivity in Chronic Neuropathic Pain. The Journal of Neuroscience:
The Official Journal of the Society for Neuroscience. 2018;38: 465–473.
doi:10.1523/JNEUROSCI.1647-17.2017

50. Youssef AM, Macefield VG, Henderson LA. Pain inhibits pain; human brainstem
mechanisms. NeuroImage. 2016;124: 54–62. doi:10.1016/j.neuroimage.2015.08.060

51. Rigby RA, Stasinopoulos DM. Generalized Additive Models for Location, Scale and
Shape. Journal of the Royal Statistical Society Series C (Applied Statistics). 2005;54: 507–554.
Available: https://www.jstor.org/stable/3592732

30

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.587070doi: bioRxiv preprint 

https://doi.org/10.1016/j.neuron.2013.09.009
https://doi.org/10.1038/ncomms10996
https://doi.org/10.1038/nn.4615
https://www.frontiersin.org/articles/10.3389/fnhum.2011.00039
https://www.frontiersin.org/articles/10.3389/fnhum.2014.00825
https://doi.org/10.1371/journal.pcbi.1003441
https://doi.org/10.1002/nbm.3022
https://doi.org/10.1097/WCO.0000000000000222
https://doi.org/10.1016/j.tins.2015.03.002
https://doi.org/10.1523/JNEUROSCI.1647-17.2017
https://doi.org/10.1016/j.neuroimage.2015.08.060
https://www.jstor.org/stable/3592732
https://doi.org/10.1101/2024.03.27.587070


Uncertainty Modulation of Illusory Pain Ehmsen et al.

52. Weiskopf N, Suckling J, Williams G, Correia MM, Inkster B, Tait R, et al. Quantitative
multi-parameter mapping of R1, PD*, MT, and R2* at 3T: A multi-center validation. Frontiers in
Neuroscience. 2013;7: 95. doi:10.3389/fnins.2013.00095

53. Tabelow K, Balteau E, Ashburner J, Callaghan MF, Draganski B, Helms G, et al.
hMRI—A toolbox for quantitative MRI in neuroscience and clinical research. NeuroImage.
2019;194: 191–210. doi:10.1016/j.neuroimage.2019.01.029

54. Corbin N, Callaghan MF. Imperfect spoiling in variable flip angle T1 mapping at 7T:
Quantifying and minimizing impact. Magnetic Resonance in Medicine. 2021;86: 693–708.
doi:10.1002/mrm.28720

55. Ashburner J, Friston KJ. Unified segmentation. NeuroImage. 2005;26: 839–851.
doi:10.1016/j.neuroimage.2005.02.018

56. Lorio S, Fresard S, Adaszewski S, Kherif F, Chowdhury R, Frackowiak RS, et al. New
tissue priors for improved automated classification of subcortical brain structures on MRI.
NeuroImage. 2016;130: 157–166. doi:10.1016/j.neuroimage.2016.01.062

57. Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007;38:
95–113. doi:10.1016/j.neuroimage.2007.07.007

58. Helms G, Draganski B, Frackowiak R, Ashburner J, Weiskopf N. Improved segmentation
of deep brain grey matter structures using magnetization transfer (MT) parameter maps.
Neuroimage. 2009;47: 194–198. doi:10.1016/j.neuroimage.2009.03.053

59. Draganski B, Ashburner J, Hutton C, Kherif F, Frackowiak RSJ, Helms G, et al. Regional
specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based
quantification (VBQ). NeuroImage. 2011;55: 1423–1434. doi:10.1016/j.neuroimage.2011.01.052

60. Esteban O, Birman D, Schaer M, Koyejo OO, Poldrack RA, Gorgolewski KJ. MRIQC:
Advancing the automatic prediction of image quality in MRI from unseen sites. PLOS ONE.
2017;12: e0184661. doi:10.1371/journal.pone.0184661

61. Lutti A, Corbin N, Ashburner J, Ziegler G, Draganski B, Phillips C, et al. Restoring
statistical validity in group analyses of motion-corrupted MRI data. Human Brain Mapping.
2022;43: 1973–1983. doi:10.1002/hbm.25767

62. Ridgway GR, Henley SMD, Rohrer JD, Scahill RI, Warren JD, Fox NC. Ten simple rules
for reporting voxel-based morphometry studies. NeuroImage. 2008;40: 1429–1435.
doi:10.1016/j.neuroimage.2008.01.003

63. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, et al. A new
SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data.
NeuroImage. 2005;25: 1325–1335. doi:10.1016/j.neuroimage.2004.12.034

31

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.587070doi: bioRxiv preprint 

https://doi.org/10.3389/fnins.2013.00095
https://doi.org/10.1016/j.neuroimage.2019.01.029
https://doi.org/10.1002/mrm.28720
https://doi.org/10.1016/j.neuroimage.2005.02.018
https://doi.org/10.1016/j.neuroimage.2016.01.062
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1016/j.neuroimage.2009.03.053
https://doi.org/10.1016/j.neuroimage.2011.01.052
https://doi.org/10.1371/journal.pone.0184661
https://doi.org/10.1002/hbm.25767
https://doi.org/10.1016/j.neuroimage.2008.01.003
https://doi.org/10.1016/j.neuroimage.2004.12.034
https://doi.org/10.1101/2024.03.27.587070

